
Adding Spice to Your Research with Sage
Open Source Software for Mathematics

May 10, 2011

Rob Beezer

University of Puget Sound

Perimeter Institute for Theoretical Physics

Waterloo, Canada

1 What is Sage?

• Sage: Open source software for mathematics
• A computer algebra system
• A “distribution” of software for mathematics
• A digital blackboard
• Mission: “Creating a viable free open source alternative to Magma, Maple,
Mathematica and Matlab.”

2 Who am I?

• “Pure” mathematician – algebra, discrete mathematics
• Teacher at an undergraduate liberal arts college
• Active Sage developer – linear algebra, group theory, graph theory

1



• Interested in integrating Sage into the classroom (NSF education grant)
• Sage Lecturer, African Institute of Mathematical Sciences, Fall 2010

2



3



3 Components

• Pynac for symbolic expressions

var(’t’)

f(t) = t*tan(t^3)

f

var(’s’)

f(s)

• Maxima for derivatives, antiderivatives

fprime(t) = f.derivative()

fprime

• matplotlib for 2-D graphics

fprime.plot()

• GAP (Groups, Algorithms, Programming) for group theory

G = DihedralGroup(10)

G.center()

• BLAS, ATLAS, LAPACK, NumPy, SciPy for linear algebra

A = matrix(QQ,[[ 3, 2, 0, 1],

[ 2, 1, 1, 0],

[ 1, -1, 5, -3],

[-2, -3, 5, -4]])

A.echelon_form()

K = A.kernel()

K

K.dimension()

A.eigenvalues()

B = A.change_ring(RDF)

B.eigenvalues()

4



• JMOL for 3D graphics

var(’x y’)

plot3d(x^2+3*y^2, (x, -2, 2), (y, -2, 2))

var(’x y z’)

T = RDF(golden_ratio)

p = 2 - (cos(x + T*y) + cos(x - T*y) + cos(y + T*z) + cos(y - T*z) + cos(z - T*x) + cos(z + T*x))

r = 4.77

implicit_plot3d(p, (x, -r, r), (y, -r, r), (z, -r, r), plot_points=40).show()

• R and GSL for probability and statistics

sage: data = [1.2, 3.6, 9.8, 5.4, 7.6]

sage: R_data = r.c([1.2, 3.6, 9.8, 5.4, 7.6])

sage: R_data.parent()

sage: R_data.summary()

sage: python_data = R_data.sage()

sage: python_data

sage: sigma = 2

sage: T = RealDistribution(’gaussian’, sigma)

sage: T.get_random_element()

sage: T.cum_distribution_function(1)

sage: T.cum_distribution_function_inv(.95)

3.1 Other Packages

• Singular - commutative and non-commutative algebra, algebraic geome-
try, and singularity theory
• Symmetrica - representation theory
• SciPy - optimization, numerical integration, Fourier transforms, signal
processing, ODE solvers
• 80 others...number theory, finite fields, number fields, cryptography

5



3.2 The Glue

• Python is the development language
• Python is the user language
• There is no such thing as a kernel
• Any Python package may be simply import’ed

import scipy

scipy.version.version

scipy.finfo(’float128’).tiny

4 History and Development

• Started in 2005 by William Stein (U of Washington), as reaction to pro-
prietary systems
• 95 packages; 500,000 lines of new code
• Funding: US National Science Foundation, Google, Microsoft, US De-
partment of Defense, ANR, CNRS, academic institutions, and others
• 273 developers, about 50 contribute to any one release
• Regular releases, very stable intermediate releases
• Every change is peer-reviewed, a single “release manager”
• Linux, OSX; Windows port in-progress
• Trivial to build from source, minimal prerequisites
• sage-devel, sage-support Google groups: 3000 members, 1500 messages/-
month
• 31 Sage Days Workshops, 3 Sage Educational Days

5 Sage Notebook, a Digital Blackboard

• Web interface, local or remote server
• Every copy of Sage contains a server
• Worksheet management
• Online tab-completion, help, source

A = matrix(QQ,[[ 3, 2, 0, 1],

[ 2, 1, 1, 0],

[ 1, -1, 5, -3],

[-2, -3, 5, -4]])

6



• Tab-completion for methods

A.

• One question mark brings help, with tested examples

A.jordan_form?

• Two question marks brings source code

A.jordan_form??

• Source code display

search_def(’jordan’)

• Low barriers to development
• Revision control log (Interrupt to stop serving)

hg_sage.browse()

• LATEXintegration (use typeset button)

var(’x’)

f = x^3*e^-x

f.integrate(x)

• More LATEXintegration

latex(A)

• Integrated mini-editor, supports LATEXsnippets (shift-click above)
• Interactive demonstrations, explorations

import pylab

A_image = pylab.mean(pylab.imread(DATA + ’mystery.png’), 2)

@interact

def svd_image(i=(1,(1..50)), display_axes=True):

u,s,v = pylab.linalg.svd(A_image)

A = sum(s[j]*pylab.outer(u[0:,j], v[j,0:]) for j in range(i))

show(matrix_plot(A), axes=display_axes, figsize=(11,5))

html(’<h2>Compressed using %s singular values</h2>’%i)

7



6 Fast

• Exact determinant of a 500× 500 integer matrix

A = random_matrix(ZZ, 500)

d = A.determinant()

d

N(log(abs(d), 10), digits=5)

• Precise timings

timeit("A.determinant()", number=2, repeat=3)

7 Easy

• 4× 4 matrix entries

entries = [[1, -2, -4, 4], [1, -2, -3, 4], [0, -2, -6, 6], [-1, 2, 1, -4]]

• Over the integers

A = matrix(ZZ, entries)

A.echelon_form()

• Over the rationals

A = matrix(QQ, entries)

A.echelon_form()

• With floating point double-precision reals

A = matrix(RDF, entries)

P, L, U = A.LU()

print L.round(5)

print

print U.round(5)

• With elements of a finite field

F.<a> = FiniteField(3^2)

F.list()

A = random_matrix(F, 4, 4)

A

A.characteristic_polynomial(’T’)

8



8 All-In-One

• Seamlessly move from one area of mathematics to another

G = graphs.CirculantGraph(12, [1, 5])

G.plot()

G.adjacency_matrix()

G.spectrum()

A = G.automorphism_group(); A

A.order()

9 Versatile

• Drill down into included libraries
• SciPy Python bindings to FORTRAN LAPACK
• Example by Jason Grout

A = matrix(RDF, [[10,2,3],[3,4,6],[2,8,10]])

import scipy

import scipy.linalg

lu, piv, success = scipy.linalg.flapack.dgetrf(A.rows())

# Break apart combined L and U

rows, cols = lu.shape

L = copy(matrix(RDF,rows,cols,1))

U = matrix(RDF,rows,cols)

for i in range(rows):

for j in range(cols):

if i>j:

L[i,j]=lu[i,j]

else:

U[i,j]=lu[i,j]

# Construct permutation matrix from permutation

9



P = copy(identity_matrix(rows))

for i,j in enumerate(piv):

P.swap_rows(i,j)

print "\nP: \n", P

print "\nL: \n", L

print "\nU: \n", U

print "\nVerification: \n", P*A - L*U

10 Convenient

• Install on any computer (don’t need to be root)
• Access from any web browser, including smart phones
• Command line or notebook
• Batch or interactive
• Dedicated applications, such as Android application
• Novel front-ends – one-shot cell phone at http://math3.skku.ac.kr/

wap_html

• Some folks install Sage only to get GAP, R, PARI, SciPy, etc.

11 The Conifold: from ”Toric Geometry and

Sage”

Arnold Sommerfeld Center for Theoreti-

cal Physics, Munich, April 26-29, 2011

By Volker Braun, Dublin Institute for Ad-

vanced Studies

A singularity that occurs very often is the conifold, which is the simplest
non-quotient singularity. In terms of toric geometry, it is defined by the
non-simplicial cone over a minimal lattice square at distance 1:

# do not evaluate, depends on unofficial code

?? ?? ?? ??The conifold is not smooth because the hypersurface equation
is not transverse at z̄ = (0, 0, 0, 0). More precisely, the singularities are the

10



variety of the Jacobian ideal

Jac(f) =

〈
f,

∂f

∂z0
, . . . ,

∂f

∂z3

〉
(1)

For the conifold, it is ?? ??The most basic invariant of an isolated hyper-
surface singularity is its Milnor number, which is the vector space dimension
of C[x̄]/ Jac(f(x̄)). For the conifold, it is one: ??In fact, the converse is also
true: A 3-dimensional isolated singularity of Milnor number one is a conifold.
Note, however, that higher Milnor numbers no longer uniquely determine the
singularity.
Exercise 9. Use Sage to compute the Milnor number of the singularity
C2/Zn for n ∈ {2, 3, . . . , 10}.

12 Parallel Processing

• Parallel “decorator” converts function to an iterator
• This example uses the Python multiprocessing library, can also fork, or. . .
• 2 cores, 4 threads

@parallel(’multiprocessing’, 4)

def summation(multiple):

sum = 0

for i in srange(0, 1000000*multiple, multiple):

sum = sum + i

print(’Finished {0}’.format(multiple))

return sum

• Now pass in a list of inputs to create the “jobs.”

summer = summation([20, 5, 100, 57])

• Ask for a list of the jobs (inputs and outputs, in new order).

list(summer)

• A larger list of inputs. Watch in htop.

long_summer = summation(range(100))

list(long_summer)

11



13 Cython

• Convert Python to compiled C
• Originally Pyrex, forked by Sage to Cython

def summation_python():

sum = 0

for i in range(1000000):

sum = sum + i

return sum

timeit("summation_python()")

• Declare integer variables
• Modify the for-loop

%cython

def summation_cython():

cdef i, sum

sum = 0

for 0 <= i < 1000000:

sum = sum + i

return sum

timeit("summation_cython()")

• Speedups by factors of hundreds and thousands are not uncommon
• f2c (Fortran to C) is also included

14 SageTeX

• Include Sage instructions in a LATEX document
• SageTEX isolates the commands, evaluates them, pastes in results
• Also creates and inserts plots
• Formats Sage code

12



15 Philosophy

Mathematica: “Why You Do Not Usually Need to Know about Internals”
In the online Mathematica Documentation Center.

You should realize at the outset that while knowing about the
internals of Mathematica may be of intellectual interest, it is
usually much less important in practice than you might at first
suppose.

. . .

Indeed, in almost all practical uses of Mathematica, issues about
how Mathematica works inside turn out to be largely irrelevant.

. . .

Particularly in more advanced applications of Mathematica, it
may sometimes seem worthwhile to try to analyze internal algo-
rithms in order to predict which way of doing a given computa-
tion will be the most efficient. And there are indeed occasionally

13



major improvements that you will be able to make in specific
computations as a result of such analyses.

But most often the analyses will not be worthwhile. For the
internals of Mathematica are quite complicated [emphasis added],
and even given a basic description of the algorithm used for a
particular purpose, it is usually extremely difficult to reach a
reliable conclusion about how the detailed implementation of this
algorithm will actually behave in particular circumstances.

J. Neubüser (Founder of GAP): “An invitation to computational group the-
ory.”
In C. M. Campbell, T. C. Hurley, E. F. Robertson, S. J. Tobin, and J. J.
Ward, editors, Groups 93 Galway/St. Andrews, Volume 2, volume 212 of
London Mathematical Society Lecture Note Series, pages 457-475. Cam-
bridge University Press, 1995.

You can read Sylow’s Theorem and its proof in Huppert’s book in
the library without even buying the book and then you can use
Sylow’s Theorem for the rest of your life free of charge, but. . .
for many computer algebra systems license fees have to be paid
regularly for the total time of their use. In order to protect what
you pay for, you do not get the source, but only an executable,
i.e. a black box. You can press buttons and you get answers in
the same way as you get the bright pictures from your television
set but you cannot control how they were made in either case.

With this situation two of the most basic rules of conduct in
mathematics are violated: In mathematics information is passed
on free of charge and everything is laid open for checking. Not
applying these rules to computer algebra systems that are made
for mathematical research. . . means moving in a most undesirable
direction. Most important: Can we expect somebody to believe
a result of a program that he is not allowed to see? Moreover:
Do we really want to charge colleagues in Moldava several years
of their salary for a computer algebra system?

• Available at http://buzzard.ups.edu/talks.html

14


