A First-Year Seminar in Cryptology
“The Art and Science of Secret Writing”

Rob Beezer
beezer@ups.edu

Department of Mathematics and Computer Science
University of Puget Sound

MAA Session on Cryptology for Undergraduates
Joint Mathematics Meetings
New Orleans, Louisiana
January 6, 2011

Posted at http://buzzard.ups.edu/talks.html
Outline

- Course Characteristics
- Texts
- Assignments
- Software
- Worksheets
A First-Year Seminar

- A “Scholarly and Creative Inquiry Seminar”
- One half of replacement for English & Communications sequence
- Every first-year student takes one
- Offered by any member of the faculty on any topic
- Minimal prerequisites, if any (4 years high school mathematics)
- Significant writing component (one large research paper, presentation)
- Fall: Populated by Advising Director
 Spring: more self-selection, more CS majors
- Not a *creative* writing course!
Course Outline

- Fall 2003, Spring 2005, Spring 2006
- 50 minutes, 3 days a week, 14 weeks
- 5 weeks: History, Classical Crypto (substitution, Vigenère, Enigma)
- 5 weeks: Modern Crypto (DES, RSA, PGP)
- 4 weeks: Public Policy (Clipper Chip, NSA, DMCA), Presentations
Texts

- Simon Singh, *The Code Book* *
- Custom notes on basic mathematics (∼50 pages) *
 - Modular arithmetic
 - Bases, radix notation, binary
 - Discrete logarithm
 - Diffie-Hellman key exchange
 - Knapsack public-key algorithm
 - RSA public-key algorithm
- Neal Stephenson, *Cryptonomicon* *
 - WWII crypto: Alan Turing, Bletchley Park, Navajo Code Talkers
 - Modern crypto: “FINIX”, Electrical Till Corporation (ETC)
 - Custom two page guide to historical and modern references
- Mark Fowler, *Codes and Ciphers*
 - Cumulative puzzles
 - Some are busy work, some employ classical algorithms
- Steven Levy, *Crypto*
- Bruce Schneier, *Secrets and Lies*
Assignments

- Python scripts create and email custom exercises
- Scripts also provide me with solutions for grading
- Example “Practicum”: monoalphabetic substitution cipher
 - Different permutation for each student
 - Different plaintext for each student (≈ 5 KB from Project Gutenberg)
 - “Answer”: email me back the author of the text
 - Provide a “guess-and-check” command-line tool
 - Better (more complete, thorough) tools exist on web (unfortunately)
- Research Project: A public-policy “position” paper
Practicums

- Steganography: send me a message in a JPEG, shared-key
- Vignere cipher: crack a message with software tools
- Pontiflex: Decode stream cipher with playing cards (Cyptonomicon)
- SDES: Distributed brute-force attack
 (1024 keys, 64 keys per students, Java applet)
- PGP: three exercises
 - Key generation and signing (by me)
 - I send encrypted text, they return the author encrypted
 - Each student gets five signed messages, only one signed by me
- Anonymous remailers
- PGP Timestamping with Stamper
Software

- Various command-line tools available
- Various web/Javascript tools also available
- Hushmail: free public-key email, discussion groups
- PGP is always a hassle, GnuPG now?
- Run my own email server?
- OS-specific? Or email and web tools?
- Mutt/Pine/command-line versus Facebook/Twitter/tablet?
Worksheets

- In-class worksheets in teams
- Illustrate public/private communications
- Toy versions of:
 - Diffie-Hellman key exchange
 - Knapsack public-key
 - RSA public-key
Talk: http://buzzard.ups.edu/talks.html

Archived Math 133's: http://buzzard.ups.edu/courses.html