Using Sage to Teach Group Theory

Rob Beezer
beezer@ups.edu

Department of Mathematics and Computer Science
University of Puget Sound

Sage Edu Days 1
Clay Mathematics Institute
December 5, 2009
Undergraduate Group Theory

- **Fall:** Group Theory
- **Spring:** Rings, Modules, Fields, Galois Theory
- Nine students, all seniors
 - 4 Mathematics majors
 - 3 Math, Computer Science double majors
 - 1 Physics major
 - 1 English major
- Introductory programming required for a math major
- Abstract Algebra: Theory and Applications, by Tom Judson
 - Open-source, at abstract.pugetsound.edu
 - Similar to Gallian
 - Topics similar to Herstein
 - One chapter a week, one Sage exercise set each week
Why Sage?

- Simpler syntax than GAP, almost as powerful for our purpose
- Will be even more valuable for ring theory, field extension topics
- Notebook interface
 - Easy setup (at minimum, sagenb.org)
 - Easy for students to learn
 - Students can comment on their work with LaTeX
- Python language for simple programming
- Skills transfer
 - to other courses
 - to other areas of mathematics
 - to other areas of life
Goals

- Learn basics of
 - Sage
 - Python
 - \LaTeX

- Become comfortable with calculations in groups
- Form conjectures from long sequences of computations
- Experiment!
- Understand constructive proofs
Chapter 0

- Judson: Proofs, Sets, Equivalence relations
- One class session on Sage and notebook
 - Getting started
 - Saving, emailing a worksheet
 - Help: tab-completion, manuals
- Exercise: Email me one interesting computation
- Developer Project: Implement equivalence relations (wrap GAP?)
Chapter 1

- Judson: Induction, Divisibility, Primes, GCD, etc
- Exercise
 - Build, check primes
 - Compute GCDs
 - Relatively prime pair as linear combination equaling 1
 - Factorization
 - Divisibility checks (mod, div operations)
- Instructions walked them through these steps
Chapter 2

- Judson: Integers mod n, Symmetries of plane figures
- Judson: Basics of groups, subgroups
- Exercise
 - Permutation group constructions, $G = \text{SymmetricGroup}(3)$
 - Properties: G.order(), G.abelian()
 - Cayley tables: G.cayley_table()
 - Formatted discussion of Cayley tables, S_3 vs. C_6
 - Optional: create a subgroup using an abundance of generators
 using $H = G$.subgroup([gens])
 Check with G.is_subgroup(H)
- Still learning basics, asked for discussion, some experimentation
- Developer Project: Improve Cayley tables
Chapter 3

- Judson: Cyclic groups, their subgroup structure
- Exercise
 - Group of units under multiplication mod 40, mod 49, mod 35 (Only mod 49 is cyclic)
 - Ring: $R = \text{Integers}(40)$
 - Group: $U = R\cdot\text{list_of_elements_of_multiplicative_group}()$
 - Explore orders, cyclic-ness with Python loops
 - Open-ended question: conjecture about structure of $U(n)$
- Basic Python loops, more discussion, more speculation
- Student: Show a group is non-cyclic by lack of generators
 OR two elements of order two
- Developer Project: Implement the group of units mod n on top of abelian groups
Chapter 4

- Judson: Permutation groups, cycle structure, alternating group
- Exercise
 - Group and element constructions, using cycle notation
 - Basic computations: powers, inverses, signs, orders
 - Cyclic subgroups via single generator
 - Experiment: Build all subgroups of A_4 "manually"
 - Crash Sage?
 List PermutationGroup([“(1,3)(4,5)” , “(1,3)(2,5,8)(4,6,7,9,10)”])
 (order 80 640)
- Computational proficiency in permutation groups
- Brute-force experimentation to find subgroups
Chapter 5

- Judson: Cosets, Lagrange’s Theorem
- Exercise
 - Provided a routine to make all subgroups
 - Experiment: find group, divisor of subgroup such that there is no subgroup of that order (and not A_4 example from class)
 - Other items not worth talking about
- Developer Project: all subgroups of a group (GAP gives representatives of conjugacy classes of subgroups)
Chapter 8

- Judson: Isomorphisms
- Exercise
 - Permutation representations via Cayley’s Theorem (the left or right regular representation)
 - Practice: Quaternions
 - $\mathbb{Z}_2 \times \mathbb{Z}_4$
 - Units mod 24
 - Use Sage commands to verify representation
- Suggested pencil and paper, with Sage as calculator
- Students: Easiest for students who wrote general code
- Students: test question was easier
Chapter 9a

- Judson: Normal subgroups, quotient groups
- Exercise
 - For A_4 and D_4 (dihedral group of order 8):
 - All subgroups with provided routine
 - Then test left and right coset equality (brute-force)
 - Check with $G.normal_subgroups()$
 - All quotient groups in A_4 ($A4.quotient_group(N)$)
- Doubly-nested loops, sorted lists, logic for equalities
- Developer Project: Quotient groups with cosets as elements, not isomorphic permutation groups
Chapter 9b

- Judson: Homomorphisms, isomorphism theorems, composition series
- Exercise
 - More normal subgroups, plus simple groups
 - All normal subgroups: \mathbb{Z}_{40} versus \mathbb{Z}_{41}
 - All normal subgroups of D_n (dihedral order $2n$)
 Conjecture pattern (one per divisor of n (almost!), parity discrepancy
 - Higman-Sims group: two generators in S_{100} at Atlas web page
 Order is $44\,352\,000$, Sage gets simplicity quickly
- Formulate conjectures
- Work with large examples
Chapter 11

- Judson: Classify finite abelian groups
- Exercise
 - Walk through constructive proof
 - Uses elements of maximal order to build internal direct products
 - Units mod 441 = $3^27^2 \ (Z_2 \times Z_2 \times Z_3 \times Z_3 \times Z_7)$
 - Units mod 2312 = $2^317^2 \ (Z_{16} \times Z_4 \times Z_{17})$
 - 241 in units mod 441 as product of powers of generators
 - brute-force a discrete-log type computation (5 generators)
- Required students read, understand proof
- Student: Very automated approach,
 and then found a very significant typo in book’s proof
Chapter 12

- Judson: Group actions
- Class: Half-day on automorphism groups of graph
- Exercise
 - Automorphisms of 4-D cube, and “symmetric” graph on 8 vertices
 \[A = G.automorphism_group() \]
 - Orbits: \[A.orbits() \], see one vertex-transitive, one not
 - Recognize “different” vertices in smaller graph
 - Stabilizers: \[B = A.stabilizer(1) \]
 - Orbits of stabilizers: \[B.orbits() \]
 - Orbits of stabilizers are refinement of distance partition (equal for 4-D cube)
 - Higman-Sims group is transitive (see this with orbits)
- More conjectures, experimentation
- Lots of good graph theory in Sage, e.g. constructors, graphics
- Student: having isomorphic stabilizers is an equivalence relation?
Chapter 13

- Judson: Sylow theorems
- Exercise
 - Sage/GAP gives **one** Sylow p-subgroup per prime
 - Conjugate to build them all, remove duplicates (Second Sylow Theorem)
 - For A_5 and dihedral group D_{36} confirm conditions on number of Sylow subgroups (Third Sylow Theorem)
- Uses now-familiar programming techniques
- Employ a theorem, confirm a theorem
Student Worksheet at http://sagenb.org
Conclusions

- Better performance on certain test questions, especially relating to constructive proofs (regular representations, finite abelian groups)
- Programming was not an impediment
- Some nontrivial computations (even massive)
- Students: Some good, thoughtful conjectures
- Students: Some interesting algorithmic approaches
- Developer Project: even better tools for managing homework
- Most returning for more in the spring — I’m looking forward to it
CREDITS
David Joyner, Robert Bradshaw, William Stein, Robert Miller, Tom Judson

This talk
buzzard.ups.edu/talks.html

Exercises
buzzard.ups.edu/courses/2009fall/m433-sage-exercises.pdf

Group Theory and Sage Primer
abstract.ups.edu/sage-aata.html