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Cages

Girth — length of shortest circuit

(r , g)-cage — smallest regular graph with degree r and girth g

Moore graph — an (r , g)-cage meeting obvious lower bound
I Example: Petersen Graph, the (3, 5)-cage
I Qualifies as a Moore graph: 1 + 3 + 3(2) = 10 vertices

Steiner Systems

Block design, notation is S(λ, m, n)

Collection of m-sets chosen from an n-set, “block”

Every λ-set is in exactly one set of the collection

Automorphism Group

Permutations of vertices “preserving” edges

σ ∈ Aut(G ) if:
(u, v) is an edge of G ⇐⇒ (σ(u), σ(v)) is an edge of G
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Construction of HS

Vertices

50 vertices total

Z5 × Z5, (a, b), 0 ≤ a, b < 5

Think of these as Cartesian “x–y” pairs

Z5 × Z5, mx + c , 0 ≤ m, c < 5

Think of these as lines of slope m, intercept c

Edges

5 pentagons

(a, b) adjacent to (a, b ± 1) (mod 5)

5 pentagrams

mx + c adjacent to mx + (c ± 2) (mod 5)
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Pentagons and Pentagrams
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More Edges

(a, b) is adjacent to mx + c ⇐⇒ ma + c = b (mod 5)

Each pentagon vertex adjacent to 5 pentagram vertices

Each pentagram vertex adjacent to 5 pentagon vertices

Regular of degree 2 + 5 = 7

25× 5 = 125 additional edges

175 total edges
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Neighbors of 2x + 1
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Neighbors of Slope 2 Pentagram
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The HS graph
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Movie One
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HS Graph is a Moore Graph

Smallest circuit has length 5 (pentagons), i.e. girth 5

Regular of degree 7

1 + 7 + 7(6) = 50 is minimum number of vertices
I Visualize a 7-ary tree of depth 2

Qualifies HS as a Moore graph

Can establish uniqueness
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Pentagonal Structure

5 of type P - P - P - P - P

5 of type L - L - L - L - L

125 of type P - P - P - L - L

125 of type L - L - L - P - P

500 of type P - P - L - P - L

500 of type L - L - P - L - P

1260 pentagons total
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10 “Base” Pentagons
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P - P - P - L - L
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P - P - P - L - L

Rob Beezer (U Puget Sound) Hoffman-Singleton Graph MAA Summer August 2009 14 / 1



L - L - L - P - P
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L - L - L - P - P
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P - P - L - P - L
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P - P - L - P - L
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L - L - P - L - P
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L - L - P - L - P
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Collections of Pentagons

Grab any one of the 1260 pentagons

The five vertices have 25 neighbors
(apart from the pentagon’s own vertices)

These 25 vertices induce 5 new pentagons

20 vertices left, they induce 4 pentagons

So cover all 50 vertices with 10 pentagons

“10-pack” of pentagons naturally divides into two “5-packs”
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An Arbitrary Pentagon (Blue)
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25 Neighbors, 5 New Pentagons (Red)

Rob Beezer (U Puget Sound) Hoffman-Singleton Graph MAA Summer August 2009 23 / 1



20 Vertices Left, 4 New Pentagons (Green)
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Cages as Subgraphs

The (6, 5) cage

Choose a 10-pack, remove one pentagon from each 5-pack

Degree 6, 40 vertices, girth 5, unique

A (5, 5) cage

Choose a 10-pack, remove two pentagons from each 5-pack

Degree 5, 30 vertices, girth 5, one of four possible types

A (4, 5) cage – Not

The (4, 5) cage is the Robertson graph

Robertson graph has 19 vertices, not 20

The (3, 5) cage, i.e. Petersen Graph

Choose a 10-pack, remove four pentagons from each 5-pack

Degree 3, 10 vertices, girth 5

Petersen Graph - 525 copies
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(6, 5) Cage
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(5, 5) Cage
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(3, 5) Cage
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Another Construction

Triples

Given a 7-set, there are
(7

3

)
= 35 possible 3-sets

Some of these can form the blocks of a S(2, 3, 7) Steiner system

Also known as the Fano plane, projective plane of order 2

An Example

123 356 257 145 347 246 167

All Fano Planes

Thirty ways to do this

Naturally splits into two sets of 15
(orbits of A7)
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A Fano Plane
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The HS Graph, Again

Vertices

All 3-sets from a 7-set, 35 “triples”

One natural half of all Fano planes, 15 “planes”

Edges

Edge between a triple and a plane ⇐⇒ triple is part of the plane

Edge between a triple and another triple ⇐⇒ disjoint sets

Edge between a plane and another plane: never
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Independent Sets in HS Graph

Independent sets (“cocliques”) are vertex sets with no adjacencies

Maximum independent set in HS has size 15

HS has 100 such independent sets, all the “same”
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Maximal Independent Set
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Maximal Independent Set
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Maximal Independent Set
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Maximal Independent Set
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The Odd Graph O4

Remove an independent set from HS

Subgraph induced by remaining vertices is O4

I 35 vertices, the 3-sets from a 7-set
I Triples are adjacent if disjoint

Generally Om is m-sets from a (2m + 1)-set,
with disjoint sets being adjacent

O4 contains Coxeter graph: degree 3, girth 7, 28 vertices
((3,7)-cage has 24 vertices)

Rob Beezer (U Puget Sound) Hoffman-Singleton Graph MAA Summer August 2009 37 / 1



Odd Graph O4
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Intersections of Independent Sets

Intersections

Choose one of the 100 independent sets

Intersections with the other 99 independent sets are:
I Empty (7 times)
I Three vertices (35 times)
I Five vertices (42 times)
I Eight vertices (15 times)

Two Independent Sets with Maximal Intersection

Two independent sets meeting in 8 vertices

Symmetric difference has 7 + 7 = 14 vertices, bipartite

Induced subgraph is the Heawood Graph, unique (3, 6)-cage

HS graph has 750 copies of Heawood Graph
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Heawood Graph (Red-Blue Ind Set, Red-Green Ind Set)
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Heawood Graph

0
1

2

3

4

5

6
7

8

9

10

11

12

13

altermundus.com
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New Graphs with Independent Sets as Vertices

Construct a new graph

Vertices: the 100 independent sets of HS

Edges: join independent sets that are disjoint

Edges: join independent sets that meet in 8 vertices

This is the Higman-Sims graph
I Strongly regular, unique for its parameters
I Easiest construction from Steiner system S(3,6,22)

1 vertex, 22 symbols, 77 blocks stitched together
I Splits naturally into two copies of HS (352 ways)
I Several other interesting subgraphs
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Automorphisms of the HS Graph

Permutations of the vertices that take edges to edges

First, permutations that preserve the 50 edges of the
pentagons and pentagrams as a set

One of order 2, swaps point vertices with line vertices

(a, b) 7→(3a)x + (2b)

mx + c 7→(m, 2c)
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Original with Differentiated Edges
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Order 2 Permutation, Swaps Pentagons & Pentagrams
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Automorphisms of the HS Graph

More permutations that fix the 50 edges of the
pentagons and pentagrams as a set

These fix edges of pentagons and edges of pentagrams as sets

Parameters: d 6= 0, e = ±1, f , g , h ∈ Z5

(a, b) 7→(da + g , fa + eb + h)

mx + c 7→ f + em

d
x +

(
ec + h − f + em

d
g

)
4 · 2 · 53 = 1000 permutations
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Original HS
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Translation of Pentagons
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Original HS
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Rotations on Pentagons
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Original HS
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Total Mixing
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Automorphism Group of HS Graph

One order 2 permutation, swaps pentagon and pentagram edges

1000 permutations fixing pentagon edges and pentagram edges

Subgroup of order 2000 fixing pentagon and pentagram edges

Automorphism group is transitive on the 1260 10-packs of pentagons

In other words, there exist vertex permutations taking edges
of any 10-pack to the edges of any other 10-pack

Thus, order of automorphism group is

2 · 1000 · 1260 = 252, 000
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Movie Two
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Miscellaneous Facts About HS

Strongly regular, unique for its parameters

Hamiltonian

Line graph is distance-regular

Vertex-transitive

Symmetric (transitive on edges, as ordered pairs of vertices)

Connections to finite geometries

Connections to codes
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