
Data Analysis Using Matrix Decomposition

Tristan Gaeta

April 26, 2021

Abstract

Matrix decomposition has had a significant impact on the realm of data
science. We will be discussing some important aspects of the Singular Value
Decomposition (SVD), and applications of the SVD in data analysis. To
demonstrate some of these applications, we will be talking about the 2006
Netflix Prize Competition to create a better recommending system, and how
some participants addressed the challenge. Similar matrix decomposition
techniques are in recommendation or search algorithms used by all sorts of
advertisers, streaming services, and other tech companies. There are a variety
of different applications of the topics we will discuss.

Key Aspects of the SVD

The traditional Singular Value Decomposition consists of the product
three matrices, U , S, and V , where U and V are unitary matrices, and S
is an m × n matrix with singular values along the diagonal. The SVD can

©2021
Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)

The text of this license can be found at:
http://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

1

http://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

reveal correlations within data sets, and is often used for data compression.
The decomposition of a matrix, X, is as follows

X = USV ∗

Suppose we have a dense, m× n, data matrix, X, with complex entries.
The columns of X are composed of the m-dimensional vectors xi for 1 ≤ i ≤
n. Let’s look into how we can interpret the correlation matrix X∗X. We
know that by the definition of matrix multiplication that the entry of row i
and column j of X∗X can be expressed as the following.

[X∗X]ij =
m∑
k=1

[X∗]ik[X]kj

=
m∑
k=1

[X]ki[X]kj

= 〈xi,xj〉

In other words each entry of the matrix, [X∗X]ij, is the Hermitian inner
product of the ith and the jth columns of the original data matrix, X. If we
are trying to evaluate how the vectors, xi, are related to each other, these
values will be of interest. These inner products contain information about
how similar any two vectors are to each other. Vectors that differ more
greatly will be more orthogonal to each other, and therefore will have an
inner product closer to zero. In the case of the Singular Value Decomposition,
the columns of X∗X are spanned by the orthonormal basis made from the
column space of the unitary matrix, U .

Similarly, the matrix XX∗ is composed of the Hermitian inner products
of the rows of the data matrix, X. In the Singular Value Decomposition,
columns of XX∗ are in the column space of the matrix, V .

The matrix, S, from the SVD captures another aspect of these correlation
matrices. Let µ be the minimum of m and n. Matrices XX∗ and X∗X
will share the same eigenvalues, {λ1, λ2, · · · , λµ}. The remaining |m − n|
eigenvalues of the larger matrix will be zero. We define the singular values,
σi, of the original data matrix, X, as σi =

√
λi for 1 ≤ i ≤ µ. Singular values

are sorted in decreasing order such that σ1 ≥ σ2 ≥ · · · ≥ σµ. Using these
singular values, we define the m× n matrix, S, entrywise as

[S]ij =

{
σi for i = j
0 for i 6= j

2

The sorted order of singular values in matrix S is an important aspect of
the SVD. Let vector ui be the ith column of U and vector vi be the ith
column of V . Since matrices U and V are unitary, vectors ui and vi will
have a norm of one. Therefore, the outer product of these vectors, uiv

∗
i ,

will be a matrix with a Frobenius norm of one. We can think of the matrix
product, USV ∗, as a summation of these norm one matrices scaled by the
corresponding singular value. Because of the sorted order of singular values,
we will see a similar order in the Frobenius norms of the outer products, such
that

‖σ1u1v
∗
1‖F ≥ ‖σ2u2v

∗
2‖F ≥ · · · ≥ ‖σµuµv∗µ‖F

This gives rise to an important application of the SVD. We can approximate
the original matrix, X, using only the larger singular values. This topic, and
its applications, will be discussed further in the following section.

Matrix Approximation and Data Compression

In data analysis, it is often the case that we are working with an extremely
large number of data points, which can make analysis difficult. Data sets with
high dimensionality can be extremely difficult to work with for a number of
reasons. If, for example, we want to use our data to solve a system of
linear equations, Ax = b, an exact solution only exists if the vector b is in
the column space of A. Therefore if our data has high dimensionality, we
will need a large number of linearly independent measurements to construct
any vector b. However, with a large enough data set, we would be able to
approximate the vector b with a linear combination of the vectors we have. If
our data contains a number of dimensions with little variance, and their exact
differences are of little contribution the desired vector, they can be excluded
from our approximation. Doing so compresses our data by decreasing the
number basis vectors requires to approximate b.

There are a several ways to decrease the number of values we need to work
with for the Singular Value Decomposition. Suppose we want to perform an
analysis on a dense, m× n, data matrix, X, by computing its SVD. Assume
that m > n, though there is a similar argument for the opposite case. Using
the traditional decomposition, where matrices U and V are unitary, we would
need m2 + n2 + n values to represent matrices U , V , and S. We want to
decrease the number of values required to represent the SVD while preserving
its exactness. We know,

3

X = USV ∗ =
[
u1| u2| · · · | um

]

σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σn

O

v∗1
v∗2
...
v∗n

=
[
σ1u1| σ2u2| · · · | σnun

]

v∗1
v∗2
...
v∗n

=
[
u1| u2| · · · | un

]

σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σn

v∗1
v∗2
...
v∗n

= Ũ S̃V ∗

This method is often referred to as the Economy SVD. With this method we
can see that Ũ is an m× n matrix made from the first n columns of U . The
matrix S̃ is now a square, diagonal matrix with singular values in decreasing
order along the diagonal. To represent these as matrices we now only need
mn + n2 + n values. (Note, similarly in the case where m < n, we can

construct the matrix product US̃Ṽ ∗, where S̃ is an m ×m diagonal matrix
and Ṽ is an n×m matrix from the first m columns of V). It is important to

notice that if the Economy SVD is performed, the matrices Ũ and Ṽ are no
longer unitary. The matrices will still span the column space and row space
of the data matrix, X, respectively, but will not form orthonormal bases for
Cm or Cn.

In a similar manner, we can decrease the size of our data by making
an approximation of the data matrix, X. Because singular values along
the diagonal of matrix S are in decreasing order, we can create a rank k
approximation, X̂k, that only include the k largest singular values, such that

X̂k =
k∑
i=1

σiuiv
∗
i 1 ≤ k ≤ min(m,n)

4

Suppose we want to find the X̂k closest X by minimizing the Frobenius norm,
‖X − X̂k‖F, while having the same rank, r, as matrix X. In other words, we
want to solve the system

min
X̂k

(‖X − X̂k‖F) rank(X̂k) = rank(X)

According to the Eckard-Young Theorem [7], the solution to this system

would be the rank r approximation, X̂r, where

X̂r = Û ŜV̂ ∗ =
r∑
i=1

σiuiv
∗
i

In this case Û and V̂ are both m × r matrices made of the first r columns
of U and V respectively, and Ŝ is an r × r diagonal matrix. This allows for
quite a bit of data compression with little to no loss of accuracy. We can
represent this approximation with mr+nr+ r2 values. When we are dealing
with extremely large data sets with high demensionality this can save us a
great deal of computation and memory.

The Netflix Prize and SVD

In 2006 the movie rental service Netflix, before creating their online
streaming service, hosted a competition where, for the prize of one million
dollars, contestants were asked to improve Netflix’s current recommender
system, Cinematch, by 10% or more [8]. The participants were given a data
set that contained the sparse ratings from 480,189 user accounts on 17,770
different movie tittles. The set only contained 100,480,507 ratings total, each
also include the date the rating was given [5].

Let’s think about this problem from the perspective of matrix decompo-
sition. We want to use our data to find correlations among users and movies
to predict what person j might rate item i. Lets construct a data matrix,
X, such that each column, xj, contains all of the ratings for one movie in
the data set, in some order. We can assume there exists a SVD for our data
matrix [6]. So if we would like to see what person i would rate item j we can

5

see by the definition of matrix multiplication that

[X]ij =
m∑
k=1

[US]ik[V
∗]kj

=
m∑
k=1

[US]ik[V]jk

= 〈v̂j, ûi〉 v̂j ∈ R(V), ûi ∈ R(U)

In other words we can express any user-item preference, [X]ij, as an inner
product of two vectors, v̂j and ûi, from the row spaces of V and U . Us-
ing the traditional SVD, these vectors would be of dimension n. With the
Netflix data set, they would be vectors from R480,189, which may require a
considerable amount of computation to approximate.

Unfortunately, in the case of the Netflix data set, we can’t simply com-
pute this matrix decomposition. Because the data matrix, X, has missing
values, we have to approximate the vectors, v̂j and ûi. The best solution
will minimize the error from our known data values and the magnitude of the
approximations we make. Let kij be the known rating from user i of item j
from the set of all known ratings, K. Let λ be a regularization factor deter-
mined by cross-validation. A good approximation will satisfy the following
minimization problem [2].

min
v̂,û

∑
kij∈K

(kij − 〈v̂j, ûi〉)2 + λ(‖v̂j‖2 + ‖ûj‖2)

Because every unknown ûi and v̂j pair is undefined, this system is not convex.
However, there are several methods we can use to approximate a solution.

Finding a Solution

Perhaps the simplest method towards approximating a minimal solution
is Stochastic Gradient Descent (SGD), popularized by Simon Funk as an
strategy in the Netflix prize competition [4]. This is a recursive process of
calculating the error of our prediction on a known rating, and adjusting the
vectors, ûi and v̂j, in the opposite direction of the gradient. Let’s define the
error, rij, of our approximation for rating kij in the set K as

rij = kij − 〈v̂j, ûi〉

6

The vectors v̂j and ûi are then adjusted by an offset proportional to γ, a
data-dependent constant controlling the magnitude of our adjustment. The
following represents the reassignment of vectors ûi and v̂j during one itera-
tion of the cycle.

v̂j ⇐ v̂j + γ(rijûi − λv̂j) ûi ⇐ ûi + γ(rijv̂j − λûi)

In the logical process of creating such an algorithm, both offsets are calculated
before reassigning the vectors, as to not corrupt the data. This approach has
a fairly simple implementation, and relatively fast run-time, making it the
most popular approach towards approximating the minimization problem.

An alternative approach towards minimizing our system is Alternating
Least Squares (ALS). By fixing one vector, ûi or v̂j, we can solve the system
optimally as a Least Squares problem [9]. We can then use our solution as
the fixed value in calculating the alternative vector. Each iteration of this
process will decrease our error until convergence. Although ALS has a more
complex implementation and run-time than SGD, implicit data is captured
more accurately in the ALS optimization. This is due in part to vectors
ûi and v̂j being computed independently of both each other and other user
or item vectors. If we were to include implicit data within our model, like
mouse-activity or confidence levels, using ALS would ensure these inputs
would be independent of the those for other user or item vectors, minimizing
the noise within our model.

Both of these methods will minimize our system, leading to an approxi-
mation of what our complete ratings matrix may look like. Another beneficial
aspect of these techniques inspired by matrix decomposition is that it is quite
simple to add other inputs to capture different aspects of our data set. In
the next section we will discuss adding biases and other inputs to our model.

Additional Parameters

So we have used correlations within our known ratings to predict what
movies other people may like. However, we can do much better with the
data given to us by Netflix. In the model we have now, all movies and users
are weighted the same. Imagine we have a two different users; one is quite
critical and typically rates movies below their average rating, while the other
is more generous and gives movies a rating above their average. We can

7

introduce biases into our model to account for such behavior when making a
recommendations.

For example lets define bi as the bias of user i. That is, how much on
average user i’s rating of a movie differ from the movie’s average rating. Lets
define the bias of movie j as bj, or how much on average a person’s rating of
this movie differs from the person’s average rating. We can now define our
predicted rating, k̂ij, from user i of item j as

k̂ij = bi + bj + 〈v̂j, ûi〉

Since both biases bi and bj are dependent on vectors ûi and v̂j we will have to
account for the error in our minimization problem. Our system now becomes,

min
v̂,û

∑
kij∈K

(kij − k̂ij)2 + λ(‖v̂j‖2 + ‖ûj‖2 + bi
2 + bj

2)

There are a variety of ways to define these biases. In some cases, using
a weighted average may be more accurate. If, for example, our data set
has several users that only rated a few movies, it may not capture that
users actual rating bias. The Netflix data set contains movies with as little
three ratings. So few ratings may not capture the item’s actual average
rating. Weighting the averages within our biases by how many movies a user
has rated, or how many ratings a movie has, may more accurately capture
trends within the data. Some models also include the global average of known
ratings as a biasing parameter.

Another additional input we could use to improve our model is varying
confidence levels [3]. This is just a factor of how confident we are in a certain
approximation. If for some reason we believe the data for a certain item or
user is not accurate, we can account for that when determining our error.

The Netflix data set contains additional information we have not used
yet. With each known review is the date the review was given. So far our
model has been static, but we could make our inputs dependent on time,
also known as temporal dynamics [2]. A user’s movie preference may change
over time, so we can make our prediction dependent on when we are making
the prediction to more accurately captures a users current preferences. With
this information we can create a considerably accurate prediction. In fact,
in 2010 Netflix cancelled a second competition due to privacy concerns, as
two researchers from The University of Texas at Austin were able to identify

8

individual users by matching the data sets with film ratings on the Internet
Movie Database.

The following is a figure created by Y. Koren, R. Bell, and C. Volinsky [2],
which displays the root-mean-squared error of the systems we have discussed
and others, dependent on the number of parameters used.

Clearly the more accurate models are much more complex, as they require
substantially more parameters. However we were able to greatly increase the
accuracy of our predictions.

Conclusion

We have seen how the SVD can capture correlations within a data set,
and how it can be used for data compression. There are a number of different
applications for these topics. We saw how concepts of matrix decomposition
inspired data scientists in the Netflix Prize Competition, and some of the
techniques used to take on the challenge.

9

References

[1] R. Salakutdinov, A. Mnih, G. Hinton, ”Restricted Boltzmann Ma-
chines for Collaborative Filtering,” University of Toronto, Canada, 2007.

[2] Y. Koren, R. Bell, C. Volinsky, ”Matrix Factorization Techniques for
Recommender Systems,” IEE Computer Society, 2009

[3] Y.F. Hu, Y. Koren, and C. Volinsky, “Collaborative Filtering for Im-
plicit Feedback Datasets,” Proc. IEEE Int’l Conf. Data Mining (ICDM 08),
IEEE CS Press, 2008

[4] S. Funk, “Netflix Update: Try This at Home,” 2006;
http://sifter.org/ simon/journal/20061211.html

[5] P. Monogioudis , ”The Netflix Prize and Singular Value Decomposi-
tion,” New Jersey Institute of technology, 2021;
https://pantelis.github.io/cs301/docs/common/lectures/recommenders/netflix/

[6] M.W. Mahoney, P. Drineas, ”CUR matrix decompositions for im-
proved data analysis,” Proceedings of the National Academy of Sciences,
2009

[7] Brunton, Kutz, Proctor, ”Singular Value Decomposition and Principal
Components Analysis,” University of Washington, 2015

[8] S. Gower, ”Netflix Prize and SVD,” University of Puget Sound, 2014

[9] A. Paterek, ”Improving regularized singular value decomposition for
collaborative filtering,” Warsaw University, Poland, 2007

10

