Theorem: f is separable $\iff f$ and f' are relatively prime.

"Proof":

$$f = (x-2)^2 (x+1) \quad \text{(not separable)}$$

$$f' = (x-2)^2 \frac{d}{dx} (x+1) + \frac{d}{dx} (x-2)^2 (x+1)$$

$$= (x-2)^2 (1) + 2(x-2)(1)(x+1)$$

Note: The derivative is taken with respect to x.
Theorem 1: If $\mathbb{F} = \mathbb{F}_p^n$, finite field \Rightarrow F is the splitting field of $x^{p^n} - x$ over \mathbb{Z}_p

Proof:

\[
f = x^{p^n} - x
\]

\[
f' = x^{p^n} \cdot x^{p^n-1} - 1
\]

\[
= 0 \cdot x^{p^n-1} - 1 \quad \text{char}(\mathbb{Z}_p) = p
\]

\[
= -1
\]

So f and f' are relatively prime $\Rightarrow f$ separable

$R =$ set of all roots of $x^{p^n} - x$ in splitting field F

$|R| = p^n$ (if separable & degree p^n)

R is a field (all by itself)

Closure?
\(r_1, r_2 \in \mathbb{R} \)

Know \(r_1^{p^n} - r_1 = 0 \) \(\rightarrow r_1^{p^n} = r_1 \)

\(r_2^{p^n} - r_2 = 0 \) \(\rightarrow r_2^{p^n} = r_2 \)

Is \(r_1r_2 \in \mathbb{R} \)? \((r_1r_2)^{p^n} = r_1^{p^n}r_2^{p^n} = r_1r_2 \) \(\rightarrow \) \(r_1r_2 \) root of \(x^{p^n} - x \)

Is \(r_1 + r_2 \in \mathbb{R} \)? \((r_1 + r_2)^{p^n} = r_1^{p^n} + r_2^{p^n} = r_1 + r_2 \) \(\rightarrow \) \(r_1 + r_2 \) root of \(x^{p^n} - x \)

\(\text{Freshman's Dream} \)

So \(R \) is a field with all the roots of \(x^{p^n} - x \) and must be the smallest field with all the roots.

So \(R \) is a splitting field of \(x^{p^n} - x \) of order \(p^n \).

Grab any other field of order \(p^n \), it too will be a splitting field of \(x^{p^n} - x \), and splitting fields are unique.

"The field of order \(p^n \)."
Subfields

Fact: \(F \) field of order \(p^n \), \(K \) subfield

\[\iff 1K1 = p^m \text{, with } m \mid n. \]

Example: \(1F1 = p^6 \)

Subfields have order \(p^1, p^2, p^3, p^6 \) (not \(p^4, p^5 \))

\[\implies 1F1 = p^n, K \text{ subfield} \]

\[\text{char}(F) = p \implies \text{char}(K) = p \quad (\text{both contain } \mathbb{Z}_p) \]

\[\implies 1K1 = p^m \text{ for some } m \quad (\text{OR, } K \text{ subfield of } F \text{ additively closed by Lagrange's Theorem}) \]

Then

\[[F: \mathbb{Z}_p] = [F:K][K: \mathbb{Z}_p] \]

\[n = [F:K] m \implies m \mid n \]
Assume $F = \mathbb{F}_p^n$, $m | n$, create a subfield of order \mathbb{F}_p^m.

Algebra

\[p^n - 1 = p^m - 1 = (p^s)^m - 1 \]
\[= (p^s - 1) \left((p^s)^{m-1} + (p^s)^{m-2} + \ldots + (p^s) + 1 \right) \]
\[= (p^s)^m - (p^s)^{m-1} - \ldots - (p^s) - p^s - 1 \]

\[x^{p^n} - x = x \left(x^{p^m-1} - 1 \right) \]
\[= x \left(x^{p^m-1} - 1 \right) \]
\[= x \left(x^{p^m-1} - 1 \right) \]

Switch $s \neq m$

\[f = (p^m)^{s-1} + (p^m)^{s-2} + \ldots + p^m + 1 \]
\[= x \left(x^{p^{m-1}} - 1 \right) \left(x^{p^{m-1} \cdot 2} + x^{p^{m-1} \cdot 3} + \cdots + x^{p^{m-1}} + 1 \right) \]

So \(x(x^{p^{m-1}} - 1) = x^{p^m} - x \) is a factor of \(x^{p^m} - x \)

So the roots of \(x^{p^m} - x \) are roots of \(x^{p^m} - x \)

(when \(m/n \) =) splitting field of \(x^{p^m} - x \) is a subfield of \(F \) with order \(p^m \)

\underline{Calculus geometric series}

\[\frac{x^{k-1}}{x-1} = x^{k-1} + x^{k-2} + \cdots + x + 1 \]

\[
\frac{1}{1-r} = \frac{a}{1-r}
\]