Math 491, Thursday, April 9 Chapter 22 Finite Fields

Thu
Fri
Mon
Tue
Thu Problem session
Fri Chapter 23

Sage 22
Basics of Finite Fields

1. Field, assume finite \Rightarrow characteristic is prime, p

2. \[\{ 1, 1+1, 1+1+1, \ldots, \underbrace{1+1+\ldots+1}_{p \text{ 1's}} \} \quad (\underbrace{1+1+\ldots+1}_{p \text{ 1's}} = 0) \]

 $= \text{sub field } \cong \mathbb{Z}_p$

3. F is an extension field of \mathbb{Z}_p

 So F is a vector space w/ scalars from \mathbb{Z}_p

 $F = \text{vectors}$ $\\text{vector addition: } f_1 + f_2 \uparrow \text{define field } f_1, f_2 \in F$

 $\mathbb{Z}_p = \text{scalars}$ $\\text{scalar multiplication: } \alpha f \uparrow \text{define field } \alpha \in \mathbb{Z}_p, f \in F$
So F is a finite extension of \mathbb{Z}_p, of finite degree n.

Say $[F: \mathbb{Z}_p] = n$ (where $n = \dim(F)$).

So basis $B = \{ f_1, f_2, \ldots, f_n \}$. Every element of F "looks like" $\alpha_1 f_1 + \alpha_2 f_2 + \cdots + \alpha_n f_n$ where $\alpha_i \in \mathbb{Z}_p$.

p choices for each α_i, so \mathbb{Z}_p^n gives p^n such elements, all different.

Fact: Every finite field has order p^n.

Also for every choice of a p and a n, there is a finite field of order p^n.
A separable extension $x^2 + x + 1 \in \mathbb{Q}[x]$ has no real roots.

Let a be one root. Then $-a-1$ is the other root.

\[
(x-a)(x-(-a-1)) = (x-a)(x+a+1) = x^2 + ax + x - ax - a - a = x^2 + x - (a^2 + a) = x^2 + x - (-1) = x^2 + x + 1
\]

Extension $\mathbb{Q}(a)$ basis $\{a^0, a^1\} = \mathbb{Q}a^1$

$[\mathbb{Q}(a) : \mathbb{Q}] = 2$

$\mathbb{Q}(a) = \{s(1) + ta \mid s, t \in \mathbb{Q}\} = \langle 3s, a^1 \rangle$

Is $s + ta$ a root of a separable polynomial?

Minimal polynomial of $s + ta$ is $x^2 + (t - 2s)x + (s^2 - st + t^2)$

Check: $(s + ta)^2 + (t - 2s)(s + ta) + (s^2 - st + t^2)$
\[= \frac{S^2 + 2sta + t^2a^2}{s} + \frac{st + t^2a - 2s^2 - 2sta + s^2}{s} - st + t^2 \]

\[= t^2 + (2st + t^2 - 2st)a + t^2a^2 \]

\[= t^2 + t^2a + t^2a^2 = t^2(1+a+a^2) = t^2 \cdot 0 = 0 \]

Is this polynomial separable?

Factors as \((x - (s+ta))(x - ((s-t)-ta))\)

\[x^2 - (s+ta + (s-t)-ta) x + (s+ta)((s-t)-ta)\]

\[x^2 - (2s-t) + (s^2 - st - sta + sta - t^2a - t^2a^2)\]

\[-t^2(a+a^2) = -t^2(1) = t^2 \]

\[t = 0 \quad \text{then} \quad s+ta = s\]

is a root of the separable polynomial \(x-s \in \mathbb{Q}[x]\) and other roots
Are the two roots in the \(t \neq 0 \) case different?

In other words

\[s + t a = (s-t) - t a \] ??

Note: \(s, t \) is a basis for \(\mathbb{Q}(a) / \mathbb{Q} \).

Linear independence (VRRR)

\[\Rightarrow s = s-t \quad \text{coeff. } 1 = a \]
\[t = -t \quad \text{coeff. } a^1 \]

\[\Rightarrow t = 0 \quad t = 0 \]

Minimal poly (above) ???

\[(s + t a)^0 = 1 \]
\[(s + t a)^1 = s + t a \]
\[(s + t a)^2 = \]

\[\text{so there exists } \alpha_1, \alpha_2, \alpha_3 \text{ s.t.} \]

\[\alpha_1(1) + \alpha_2(s + t a) + \alpha_3(s + t a^2) = 0 = 0 \]

Two equations (coeffs of \(1, a \)) in three vars \((\alpha_1, \alpha_2, \alpha_3)\)

Homogeneous HME with \(a \neq 0 \)

\[\Rightarrow \text{infinite many solutions} \]

Choose a solution with \(\alpha_3 = 1 \).