Math 491 Friday, March 27 Chapter 21 Fields

- Sage 20 Monday
- Exam 19/20 Wednesday 8:30 Pacific
- Project Proposal Sunday Nite April 5 (Monday)
- Midterm Grades

\[F - \text{field}, \ E - \text{field} \quad F \leq E \]
\[E \text{ is an extension of } F \quad (E \text{ is a "super-field" of } F) \]
\[E \in \mathbb{R} \text{ field, } C \text{ extension} \quad (\text{obtain a root } i \text{ of } x^2 + 1 = 0) \]
\[E \in \mathbb{Q}(\sqrt{3}) = \left\{ a + b\sqrt{3} \mid a, b \in \mathbb{Q} \right\} \text{ extension of } \mathbb{Q} \]
\[(\text{obtain a root of } x^2 - 3 = 0 \quad \text{in } \mathbb{Q}(\sqrt{7})) \]
\[E \in \mathbb{Q}(\sqrt{17}) \quad E \in \mathbb{Q}(\cos(\pi/24)) \]

\[\mathbb{N} \rightarrow \mathbb{Z} \rightarrow \mathbb{Q} \rightarrow \mathbb{R} \quad (??) \]

We can build extension fields \(E \) over one root of an irreducible polynomial \(F \) - field, \(\mathbb{P}(\mathcal{X}) \in \mathbb{F}[\mathcal{X}] \), \(\mathbb{P}(\mathcal{X}) \) irreducible

\[\Rightarrow \langle \mathbb{P}(\mathcal{X}) \rangle \text{ maximal ideal} \Rightarrow \frac{\mathbb{F}[\mathcal{X}]}{\langle \mathbb{P}(\mathcal{X}) \rangle} \text{ is a (quotient ring) field} \]

\[\Rightarrow \bar{x} = \frac{\mathbb{F}[\mathcal{X}]}{\langle \mathbb{P}(\mathcal{X}) \rangle} \quad \mathbb{P}(\bar{x}) = \bar{0} \]

\[\Rightarrow \frac{\mathbb{F}[\mathcal{X}]}{\langle \mathbb{P}(\mathcal{X}) \rangle} \text{ contains a copy of } \mathbb{F} \quad (= \{ f+\langle \mathbb{P}(\mathcal{X}) \rangle \mid f \in \mathbb{F} \}) \]

So \(E = \frac{\mathbb{F}[\mathcal{X}]}{\langle \mathbb{P}(\mathcal{X}) \rangle} \) is an extension of \(\mathbb{F} \) (\(\bar{x} \) a root of \(\mathbb{P}(\mathcal{X}) \))

\[\bar{x} \in \frac{\mathbb{F}[\mathcal{X}]}{\langle \mathbb{P}(\mathcal{X}) \rangle} \quad \bar{x} \in \frac{\mathbb{F}[\mathcal{X}]}{\langle \bar{x}^2 - 3 \rangle} \quad \Rightarrow \mathbb{Q}(\sqrt{3}) \quad E \in \mathbb{Q}(\sqrt{3}) \]

\[\text{Ex} \quad \mathbb{F}(2^{3}) \]

\[\text{Ex} \quad \mathbb{Q}(\sqrt{-13}) \]
Sage: Finite Field (\(p^n \), modulus = \(p \) polynomial)
Sage: Number Field (polynomial) \(\rightarrow \mathbb{Q}[\text{root of polynomial}] \)

Algebraic Elements

\(F \)-field \(x \) is algebraic over \(F \) if \(x \) root of some (any) polynomial in \(F[x] \).

\(\sqrt{3} \) algebraic over \(\mathbb{Q} \) \(\sqrt{3} \) algebraic over \(\mathbb{Q} \)
\(x^2 - 3 \)

\(\pi \) is not algebraic over \(\mathbb{Q} \), we say \(\pi \) is transcendental.

Defn \(E \) is an extension of \(F \), then \(E \) is an algebraic extension
if each element of \(E \) is algebraic over \(F \).
Minimal polynomial of an element
\[\mathbb{Q}[\sqrt[3]{3 + \sqrt{2}}] \]
\[\alpha = (3 + \sqrt{2})^{\frac{1}{3}} \]

Algebraic element?

\[\alpha^3 = 3 + \sqrt{2} \]
\[\sqrt{2} = \alpha^3 - 3 \]
\[2 = (\alpha^3 - 3)^2 \]
\[2 = \alpha^6 - 6\alpha^3 + 9 \]
\[0 = \alpha^6 - 6\alpha^3 + 7 \]

So \(\alpha \) is a root of \(p(x) = x^6 - 6x^3 + 7 \), hence algebraic over \(\mathbb{Q} \)

Turns out \(x^6 - 6x^3 + 7 \) is the minimal polynomial for \(\alpha = (3 + \sqrt{2})^{\frac{1}{3}} \)

\[\mathbb{Q} \subseteq \mathbb{Q}[\sqrt[3]{3 + \sqrt{2}}] \]

Sage
\[\mathbb{Q} \subseteq \mathbb{Q}[\sqrt[3]{3 + \sqrt{2}}] \times \mathbb{Q}[\sqrt[3]{3 + \sqrt{2}}] \]

Generator \(\alpha \)

\(\alpha \), minimum polynomial()

\((\alpha^2 + 1)\), minimum polynomial()