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Abstract

In this paper, we study Cayley graphs and their properties as representations of
groups. We examine both the construction of the Cayley graph of a group given an
inverse-closed subset not containing the identity, and the identification of arbitrary
graphs as Cayley graphs. We finish by showing that the components of a Cayley graph
represent cosets of a subgroup.
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1 Introduction
When studying groups, we are often particularly interested in the set of subgroups of a
particular group. We might also be interested in graphical representations of groups. One
particularly informative graphical representation, based on group actions, is the Cayley graph
of a group G relative to some inverse-closed subset of G \ e, where e is the identity of G.
For small finite groups, in particular, Cayley graphs are an efficient way to see how G acts
on itself [5]. In addition, Cayley graphs can be used to analyze the different words of a
generating subset of a group, i.e. products of powers of elements of a generating set [6].

1.1 Preliminaries
We assume that the reader is familiar with undergraduate abstract algebra, as well as basic
graph theory terminology.

When we refer to a graph in this paper, we refer to a simple graph, i.e. one with no
loops, only undirected edges, only unweighted edges, and no more than one edge directly
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connecting any two vertices.
If S is a generating set of a finite group G, then we write G = ⟨S⟩. Any element g ∈ G

may be written as a product of some finite list of (not necessarily distinct) elements from S,
e.g. g = s1s2 · · · sk We call s1, s2, . . . , sk a word [6].

2 Cayley Graphs and Group Actions
Recall Cayley’s Theorem, which says that any group can be represented as a permutation
group, where the objects being permuted are the group elements, and the action performed
by each element is the group operation, either from the left or the right. Considering multi-
plication on the left, we can define the left regular representation of G, λg : G 7→ G, by
λg(x) = gx [1].

2.1 Introducing Cayley Graphs
For the rest of this paper, unless otherwise specified, G is an arbitrary group and C is an
inverse-closed subset of G \ e.

Definition 2.1 A graph Γ is a Cayley graph if its vertex set is a group G and its edge set
is

E(Γ) = {{g, h} | g, h ∈ G, hg−1 ∈ C},

where C is an inverse-closed subset of G\e. We write Γ = Γ(G,C), and we say that Γ(G,C)
is the Cayley graph of G relative to C[2]. ♢

Remark 2.2 Some definitions require that C be a generating set for G [3]. Others lack
the requirement that C is inverse-closed, and thus define a directed, rather than undirected
Cayley graph. Cayley himself, in defining these graphs, specified that each edge {g, h}
be colored based on which c ∈ C satisfies h = cg [4]. Our working definition defines an
undirected, uncolored graph [2].

Note that many groups have more than one Cayley graph. Here are two examples of
Cayley graphs for the cyclic group of order 8, Z8. (We will revisit these later.)

Example 2.3 Subset C generates Z8. Since Z8 = ⟨1⟩, let C = {1,−1} = {1, 7}.
Then Γ(Z8, C) is the cycle graph on 8 vertices, C8. That is, V (Γ) = Z8, and E(Γ) =
{{0, 1}, {1, 2}, . . . , {6, 7}, {0, 7}}. Notice that this graph has just one component. □

Example 2.4 Subset C∗ does not generate Z8. Let C∗ = {2, 6}. This time, notice that
C∗ generates the subgroup of Z8 isomorphic to Z4, rather than the entire group Z8. Then
Γ(Z8, C

∗) has edge set E(Γ) = {{0, 2}, {2, 4}, {4, 6}, {0, 6}, {1, 3}, {3, 5}, {5, 7}, {1, 7}}. Thus
Γ(Z8, C

∗) has two components, rather than one. □
Since a group can have multiple Cayley graphs, we should at least partially investigate

the conditions under which different Cayley graphs of the same group are isomorphic.

Lemma 2.5 Let θ be an automorphism of the group G. Then Γ(G,C) and Γ(G, θ(C)) are
isomorphic.
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Proof. For any x, y ∈ V (Γ(G,C)) = G, we have

θ(y)θ(x)−1 = θ(yx−1),

which implies that θ(y)θ(x)−1 ∈ θ(C) if and only if yx−1 ∈ C. Therefore θ is an isomorphism
from Γ(G,C) to Γ(G, θ(C)) [2]. ■

2.2 Group Actions
We should show how Cayley graphs are indeed useful representations of groups. Before we
continue, let us recall a couple of definitions related to group actions.
Definition 2.6 A permutation group S acting on a set X is transitive if for every x, y ∈ X
there exists some σ ∈ S such that σ(x) = y Equivalently, we say that S acts transitively
on X[1]. ♢

Definition 2.7 A permutation group S acting on a set X is regular if S is transitive and
no non-identity element of S fixes any element of X. Equivalently, we say that S acts
regularly on X[2]. ♢

We now define vertex transitive graphs and show that Cayley graphs are vertex transitive.

Definition 2.8 A graph Γ is vertex transitive if the group of automorphisms of Γ, Aut(Γ),
acts transitively on Γ, i.e. Aut(Γ) has only one orbit [3]. ♢

Theorem 2.9 The Cayley graph Γ(G,C) is vertex transitive.
Proof. Consider the right regular representation of G,

ρg : x 7→ xg,

which is a permutation of the elements of G. Observe that

(yg)(xg)−1 = ygg−1x−1 = yx−1,

so {xg, yg} ∈ E(Γ(G,C)) if and only if {x, y} ∈ Γ(G,C). Hence ρg is an automorphism of
Γ(G,C). By Cayley’s theorem, the set of permutations G = {ρg|g ∈ G} forms a subgroup of
Aut(Γ(G,C)) isomorphic to G. Then for every g, h ∈ G, ρg−1h maps g to h. Hence G acts
transitively on Γ(G,C), so Γ(G,C) is vertex transitive [2]. ■

Remark 2.10 Though all Cayley graphs are vertex transitive, not all vertex transitive
graphs are Cayley graphs. One example of such a graph is the Petersen graph [2].

In the proof above, we established that Aut(Γ(G,C)) contains a subgroup G isomorphic
to G which acts transitively on V (Γ) = G. Since G is isomorphic to G, no non-identity
element of G will fix any element of V (Γ) = G; thus G is regular, like G. We sum this up in
the following lemma.

Lemma 2.11 Aut(Γ(G,C)) contains a regular subgroup isomorphic to G. [2]
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We now consider the converse of this result, which allows us to identify whether a given
graph is a Cayley graph.
Lemma 2.12 If a group G acts regularly on the vertices of a graph Γ, then Γ is the Cayley
graph of G relative to some inverse-closed subset of G \ e.
Proof. Grab a vertex u of Γ. Since G acts regularly on V (Γ), we can define gv to be the
element of G such that v = gv(u). Define

C := {gv : v is adjacent to u}.

If x and y are vertices of Γ, then gx ∈ Aut(Γ), and thus x is adjacent to y if and only if
g−1
x (x) and g−1

x (y) are adjacent. However, g−1
x (x) = u, and

g−1
x (y) = gyg

−1
x (u),

so x and y are adjacent if and only if gyg−1
x ∈ C. If we identify each vertex x with gx, then

Γ = Γ(G,C). The graph Γ is undirected and has no loops, so C is an inverse-closed subset
of G \ e [2]. ■

3 Cayley Graphs, Components, and Cosets
The structure of the Cayley graph Γ(G,C) will depend on the subgroup of G generated by C.
Specifically, the Cayley graph gives a visual representation of the left cosets of the subgroup
generated by C.

Lemma 3.1 Let H be the subgroup of G generated by an inverse-closed subset C of G \ e.
Then two vertices u, v ∈ Γ(G,C) are in the same component of Γ(G,C) if and only if
uH = vH.
Proof. First, assume that u and v are in the same component Γk of Γ(G,C). For any two
vertices u, v ∈ Γk, there is at least one path from u to v in Γk, say P = {x1, x2, . . . , xm−1, xm},
where u = x1 and v = xm. Then for xi, xi+1 ∈ P , there is some ci ∈ C such that xi+1 = cixi.
Equivalently, xi+1x

−1
i is in C. Then v = (vx−1

m )(xmx
−1
m−1) . . . (x2x

−1
1 )(x1u

−1)u = hu for some
h ∈ H. We may equivalently write that h = vu−1, meaning vu−1 ∈ H. Thus by a well-known
set of equivalences, uH = vH [1].

Now, assume that uH = vH. Then vu−1 ∈ H, so v = hu for some h ∈ H. We can write
h as the product of a word of elements of C, i.e. h = cmcm−1 · · · c2c1 for (not necessarily
distinct) c1, c2, . . . , cm ∈ C. Let x0 = u, x1 = c1x0, x2 = c2x1, . . . , xm = cmxm−1. Notice that
xm = v, so there is a path u, x1, x2, . . . , xm−1, v from u to v. Hence, u and v are in the same
component of Γ(G,C). ■

This leads to the following corollary, which is presented as a lemma in [2].

Corollary 3.2 The Cayley graph Γ(G,C) is connected if and only if C is a generating set
for G.
Proof. If Γ(G,C) is connected, then Γ(G,C) has only one component. Hence [G : ⟨C⟩] = 1,,
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so G = ⟨C⟩.
If C is a generating subset of G, then [G : ⟨C⟩] = [G : G] = 1. Then Γ(G,C) has exactly

only one component. ■
We can sum up the above results in the main theorem of this section.

Theorem 3.3 Let H be the subgroup of G generated by an inverse-closed subset C of G \ e,
and let m = [G : H]. Then the Cayley graph Γ(G,C) has components Γ1,Γ2, . . . ,Γm, where
V (Γ1), V (Γ2), . . . , V (Γm) are the m left cosets of H.
Proof. By Lemma 3.1, any two elements u, v ∈ G are in the same coset of H if and only if
they are in the same component of Γ(G,C). There are exactly m cosets of H, so it quickly
follows that the cosets of H are the vertex sets of the components of Γ(G,C). ■

Example 3.4 Z8 Revisited. Revisiting Example 2.3 and Example 2.4, notice that the
number of components of Γ(Z8, {1, 7}) is [Z8 : ⟨{1, 7}⟩] = [Z8 : Z8] = 1, while the number of
components of Γ(Z8, {2, 6}) is [Z8 : ⟨{2, 6}⟩] = [Z8 : H] = 2, where H is the subgroup of Z8

isomorphic to Z4. □
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