
An Introduction to Algebraic Coding Theory

Ramsey Rossmann

April 28, 2019

Copyright ©2019 Ramsey Rossmann. Permission is granted to copy, distribute and/or

modify this document under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation; with no Invariant Sections,

no Front-Cover Texts, and no Back-Cover Texts. A copy of the license can be found at

https://www.gnu.org/copyleft/fdl.html.

Abstract

This paper looks at the algebra of simple error-detecting and error-correcting codes

and how algebraic tools can be used to create and understand such codes. Without the

probabilistic and combinatorial characteristics of these codes taken into consideration,

we rely on a few basic measures of codes to assess their usefulness. Sections 1 and 2

frame the issue and present the terminology. Section 3 explores linear codes. Section

4 extends the results from linear codes by viewing them as subgroups of polynomials

instead of vector spaces, opening up the tools of ring theory to these codes.

1 Introduction

In many settings, there is a small but positive probability that errors will occur in the

transmission of a message from one party to another. To limit the impact of such errors,

one can implement a scheme so that, if errors occur, they can be identified and possibly

corrected in a reliable manner.

A simple scheme could be to send the information multiple times. For example, suppose

Alice wants to send Bob the message u0u1 · · ·uk. Alice and Bob talk beforehand and agree

that Alice will send u0u0u0u1u1u1 · · ·ukukuk so that Bob has a better chance of recognizing if

an error occurs. If the message Bob receives is in the correct format (every three bits are the

same), Bob can be pretty sure that there are no errors in the message. On the other hand,

if he sees, for example, that the first three bits are not the same, he has detected some error.

This gives him two options: he could ask Alice to resend the message, or he could attempt

1

to correct the error. If two of the three bits are the same, then he has a good guess as to

what the original bit, and could probably feel good about making that correction himself.

This scheme could be taken a step further by Alice sending 5 or 7 or perhaps dramatically

more copies of the original message. By simple probabilistic measures, it is easy to see that

such a scheme would detect and correct errors with a high degree of accuracy. However,

there is a big price to be paid by sending a code that is many times the length of the original

message.

Here we have illustrated a few key features of coding theory that are important to note

now and that we will explore further in this paper. First, we are only concerned with

errors that occur on a noisy channel. That is, we are not worried about Alice encoding the

message incorrectly or Bob decoding it incorrectly; the errors the codes will address occur

after encoding and before decoding. We will also assume that these errors are relatively

rare and occur randomly and independently. We also can already see a tradeoff between the

accuracy of a coding scheme and its length, where high accuracy and short length are good

characteristics.

In order to assess how “good” a code is, we will consider the following questions:

• How many errors will it detect?

• How many errors will it correct?

• How accurate are the corrections?

• How efficient is the code? That is, how many bits of code are devoted to a message

versus the number devoted to checking?

• How easy is encoding and decoding?

Coding theorists have developed many different codes and families of codes that answer each

of these questions differently. While there is no best code, some codes are better than others

in different settings. In this paper, we will explore a few of these families of codes and present

specific examples of them along the way. We will focus more on the algebra of codes and

less on the probabilistic and combinatorial features. We will also make many simplifying

assumptions in an effort to offer a clean introduction to the material.

2 Basics

Here is our setup: Alice has a k-digit message (as a binary string) that she will encode

into an n-digit codeword (also a binary string). The codeword will be transmitted across a

noisy channel where some bits may change (we assume these changes are unlikely, randomly

occuring, and independent of each other). The codeword arrives at the receiver as an n-digit

binary string and is then decoded into a k-digit binary string for Bob. The goal is for Alice’s

2

k-digit message be the same as Bob’s, and the encoding and decoding methods can make

that more likely. This gives rise to the following definitions.

2.1 Definitions

Here, we introduce some ideas that will be vital to working with error-detection and correc-

tion techniques.

Definition 1. A coding scheme consists of an encoding function E : Zk
2 → Zn

2 and a

decoding function D : Zn
2 → Zk

2.

Definition 2. A codeword is an element of the image of an encoding function E : Zk
2 → Zn

2 .

Definition 3. A code C is the image of an encoding function.

Definition 4. A code is an (n, k)−block code if it encodes messages of length k into

codewords of length n.

Using an (n, k)−block code, we can take a message of any length, break it into k-length

pieces and encode each piece into n-digit codewords. As is standard, we will refer to a digit

of a binary string as a bit.

Definition 5. The rate of an (n, k)− block code is r = k/n.

This is a basic measure of the efficiency of a code.

Definition 6. The distance between two codewords x and y, denoted d(x,y), is the number

of bits in which x and y differ. This is also the minimum number of transmission errors

required to change x into y or vice versa.

Definition 7. The minimum distance of a code C , denoted dmin(C), is the minimum of

all distances d(x,y) for all distinct codewords x and y in C .

Definition 8. The weight of a codeword x, denoted w(c), is the number of 1s in x.

Definition 9. A code is t-error-detecting if, whenever there are at most t errors and at

least 1 error in a codeword, the resulting word is not a codeword. A code C is exactly

t-error-detecting if it is t-error-detecting and not (t + 1)-error-detecting.

Here, the idea is that if a code is t-error-detecting, a codeword requires more than t errors

to be decoded incorrectly.

Definition 10. A decoding function uses maximum-likelihood decoding if it decodes a

received word x into a codeword y such that d(x,y) ≤ d(x, z) for all codewords z 6= y.

3

In other words, a maximum-likelihood decoding function picks a codeword that is closest

to received word. Clearly, it would be nice if there were only one such codeword.

Definition 11. A code is t-error-correcting if maximum-likelihood decoding corrects all

errors of size t or less, assuming all ties are considered errors. A tie occurs when, for a

received word x, there exist distinct codewords y and z each with minimum distance from

from x.

Definition 12. Given a binary string x1x2 · · ·xn, the bit xn is a parity check bit if

x1 + x2 + . . . + xn−1 ≡ xn (mod 2).

From this definition, it is evident that if xn is a parity check bit, then x1+x2+. . .+xn ≡ 0

(mod 2). This is a simple, commonly used error-detection technique.

2.2 Preliminary Results

We now state some characteristics of these definitions.

Theorem 1. A code C is exactly t-error-detecting if and only if dmin(C) = t + 1.

Proof. (⇒) Suppose a code C is exactly t-error-detecting. If dmin(C) < t + 1, then there

exist codewords x and y such that t or fewer errors are required to change x to y. That is,

x could be encoded, encounter t errors such that what was sent as x is decoded as y. Thus,

C would not be t-error detecting, so dmin(C) ≥ t+ 1. If dmin(C) > t+ 1, then any codeword

that experiences t + 1 errors is no longer a codeword, so t + 1 errors can be detected. This

is also a contradiction, so dmin(C) = t + 1.

(⇐) Suppose dmin(C) = t+1. Then any codeword that experiences t or fewer errors is not

a codeword, so the error can be detected. Let x and y be codewords such that d(x,y) = t+1.

Then there are exactly t + 1 bits that are differently between x and y. Thus, there is a set

of t + 1 errors that can occur such that what is sent as x is decoded as y. Therefore, C is

not t + 1-error-detecting. By definition, C is exactly t-error-detecting.

Theorem 2. A code C is t-error-correcting if and only if dmin(C) = 2t + 1 or 2t + 2.

A proof can be found in [6, 131].

3 Linear Codes

Here we will explore a simple, powerful family of single error-correcting codes called linear

codes. These codes rely heavily on linear algebra and abstract algebra techniques. First, we

will begin with an example.

4

3.1 Example

Suppose we want to create a block code that uses parity check bits to encode 4-bit messages

into 7-bit codes. First, we will consider an m-bit binary string u1u2 · · ·um to be equivalent

to the vector u =

u1

u2

...

um

 = (u1, u2, . . . , um) in Zm
2 . Let E : Z4

2 → Z7
2 be an encoding function

with E(u1, u2, u3, u4) = (x1, x2, x3, x4, x5, x6, x7), defined as follows with arithmetic modulo

2:

x1 = u1 x5 = u1 + u2

x2 = u2 x6 = u2 + u3

x3 = u3 x7 = u3 + u4

x4 = u4

In other words, bit 5 checks bits 1 and 2, bit 6 checks bits 2 and 3, and bit 7 checks bits

3 and 4. How can we determine the code C that E creates? Luckily, matrices are helpful

here. Let

G =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 1 0 0

0 1 1 0

0 0 1 1

and H =

1 1 0 0 1 0 0

0 1 1 0 0 1 0

0 0 1 1 0 0 1

 .

Then, for any u ∈ Z4
2, Gu =

u1

u2

u3

u4

u1 + u2

u2 + u3

u3 + u4

∈ Z7

2 is a codeword of C . Thus, we will call G the

generator matrix for C .

For some x ∈ Z7
2, we see that H has the property that Hx =

x1 + x2 + x5

x2 + x3 + x6

x3 + x4 + x7

 = 0 if and

5

only if

x1 + x2 ≡ x5 (mod 2) (1)

x2 + x3 ≡ x6 (mod 2) (2)

x3 + x4 ≡ x7 (mod 2). (3)

By our definition of E, (1), (2), and (3) are simultaneously true if and only if x is a codeword

of C . Thus, Hx = 0 if and only if x ∈ C . For this reason, we will refer to the matrix H as

the parity-check matrix of C . The matrix H also defines the code C since C = N (H).

Here, we have shown an example of a linear (7, 4)−block code. We will now generalize

this kind of code, adapting the definition given by Lidl and Pilz in [4, p.193].

3.2 Generalization

Definition 13. Let H be an (n− k)× n binary matrix of rank n− k. The null space of H,

N (H) ⊂ Zn
2 , forms a code C called a linear (n, k)−code with parity-check matrix H.

Theorem 3. Let C be a linear (n, k)−code with parity-check matrix H. Then C is an

additive group.

Proof. Since Zn
2 is an additive group, we will show C is a subgroup of Zn

2 using a subgroup

test. First, since H is a matrix, H0 = 0. Thus 0 ∈ C , so C is non-empty. Let x,y ∈ C .

Then H(x− y) = Hx + H(−y) = 0−Hy = −0 = 0, so x− y ∈ C . Thus, C is a subgroup

of Zn
2 , so C is a group.

In the previous example, we can see that H is of the form H =
[
A In−k

]
. When this

is the case, the first k bits are the message bits (also called information bits) and the last

n− k bits are the parity-check bits. The rank of such a matrix H is at least n− k since

it contains In−k. Since there are n − k rows, the rank is also at most n − k, so the rank is

n− k.

3.3 Coset Decoding

Part of the beauty of linear codes is that encoding only requires matrix multiplication, which

is computational straightforward. For decoding, it is a different story. We can easily check

to see if a received word x is a codeword by matrix multiplication with H. If Hx = 0, then

we have a codeword in the first k bits of x. However, if Hx 6= 0, we do not have an quick

way to find out what error occured. This will be our next task.

6

We can consider a received vector x as the sum of two vectors: the transmitted codeword

c and the transmission error e (any change in a bit corresponds to adding 1 to that bit).

Specifically,

x = c + e. (4)

Since c is in C , we know Hc = 0. Then,

Hx = H(c + e) = Hc + He = 0 + He = He.

Using maximum likelihood decoding, we want to find the vector that is closest to x. In other

words, we assume the error is smallest possible, so we want the error vector e with the least

weight.

Since C is a subgroup of Zn
2 , we can consider its cosets, which are of the form x + C for

x ∈ Zn
2 . We know there is a one-to-one correspondence given by x + C 7→ Hx. Thus, we

know x and e are in the same coset since Hx = He. This means that, instead of searching

all potential error vectors for the smallest, we need only search the vectors in the coset x+C .

We will let e be the vector of least weight in this coset. Once we have e, decoding x + e

gives the most likely original message.

Since |Zn
2 | = 2n and |C | = 2k, Lagrange’s Theorem says there are 2n−k distinct cosets of

C in Zn
2 , each with size 2k. This means that if n − k (the number of parity-check bits) is

large, searching for the correct coset becomes very slow if not impossible. This means we

will need to find a scheme with a more efficient decoding method.

3.4 Assessment

As we have seen, linear codes are simple to implement on a small scale but run into trouble

for as they get bigger. Here, we will take a moment to note some other characteristics of

linear codes to get a sense of how they compare with others we will encounter.

The linearity of a linear code comes from the following theorem:

Theorem 4. Let C be a linear code with parity-check matrix H and codewords x and y. Let

c ∈ Z2.
1 Then x + y and cx are codewords as well.

Proof. Since x and y are codewords, we know Hx = 0 and Hy = 0. Then

H(x + y) = Hx + Hy = 0 + 0 = 0.

Thus, x + y ∈ C . Similarly,

H(cx) = cHx = c0 = 0,

so cx ∈ C .
1While this result holds for any field, we are only working in Z2 for this paper, so we will ignore the more

general claim.

7

This factor is useful in determining the minimum distance of a linear code.

Theorem 5. The minimum distance dmin of a linear code C is the minimum weight of all

nonzero codewords.

Proof. For some codeword nonzero c0 ∈ C , we have the following

min
c∈C \{c0}

d(c, c0) = min
c∈C \{c0}

d(c− c0, 0)

= min
c∈C \{0}

d(c, 0) (since c− c0 ∈ C)

= min
c∈C \{0}

w(c).

Then,

dmin = min
c0∈C \{0}

(
min

c∈C \{c0}
d(c, c0)

)
= min

c0∈C \{0}

(
min

c∈C \{0}
w(c)

)
= min

c∈C \{0}
w(c).

Thus, the minimum distance of C is the minimum weight of all nonzero codewords.

As a result, linear codes can constructed to detect more than double erros and correct

more than single errors. However, for linear (n, k)−codes, removing low-weight words de-

creases the number of codewords, meaning the code cannot pass as many messages. This

pressure could be alleviated by increasing n, but this comes at a significant decoding cost,

as we have seen.

4 Polynomial Codes

Now we will look at a specific kind of linear code with much more structure than we have seen

by viewing codes as subsets of polynomial rings. Specifically, we will let u = u0u1 · · ·un−1

correspond to the polynomial f(x) = u0 + u1x + · · ·+ un−1x
n−1 ∈ Rn = Z2[x]/〈xn − 1〉. We

will also be interested in the following definition.

Definition 14. A code C is a cyclic code if, for all u = u0u1 . . . un−1 ∈ C , un−1u0u1 . . . un−2 ∈
C .

Now we can connect these two new ideas.

Theorem 6. A linear code C in Zn
2 is cyclic if and only if it is an ideal in Rn = Z[x]/〈xn−

1〉.2
2This theorem and proof are from Judson, [3, p. 353].

8

Proof. (⇒) Let C be a linear cyclic code, and suppose f(t) is in C . Then tf(t) must also

be in C since C is cyclic. Then, tkf(t) ∈ C for all k ∈ Z+. Since C is linear, any linear

combination of the codewords f(t), tf(t), t2f(t), . . . , tn−1f(t) is also a codeword by Theorem

4. Since any polynomial p(t) in Z[x]/〈xn− 1〉 is of the form p(t) = a0 + a1t+ · · ·+ an−1t
n−1,

p(t)f(t) is in C for every polynomial p(t) in Rn. Thus, C is an ideal.

(⇐) Let C be an ideal in Z[x]/〈xn−1〉. Suppose that f(t) = a0+a1t+a2t
2+ · · ·+an−1t

n−1 is

a codeword in C . Since C is an ideal, tf(t) is a codeword in C as well. Thus, C is cyclic.

4.1 Matrices

Since we are very familiar with ideals of a ring, we now have many more tools to describe

these codes.3 For instance, we can now define generator and parity-check matrices for cyclic

codes. Since Rn is a principal ideal domain, we know any cyclic code C has a unique monic

polynomial generator g(t). This generator can be used to create the generator matrix G

for C . We also know that there exists a polynomial h(x) such that g(x)h(x) = xn − 1.

The polynomial h(x) can be used create the parity-check matrix H for C . For g(x) =

g0 + g1x + · · ·+ gn−kx
n−k and h(x) = h0 + h1x + · · ·+ hkx

k, we have:

G =

g0 0 · · · 0

g1 g0 · · · 0
...

...
. . .

...

gn−k gn−k−1 · · · g0

0 gn−k · · · g1
...

...
. . .

...

0 0 · · · gn−k

, and H(n−k)×n =

0 · · · 0 0 hk · · · h0

0 · · · 0 hk · · · h0 0

· ·
hk · · · h0 0 0 · · · 0

 .

Though we will leave it unproven, these matrices serve the same purposes that the gen-

erator and parity-check matrices for linear codes from earlier did.

5 Conclusion

While there is much more to be said about coding theory, it is clear that algebraic techniques

are important to developing simple coding schemes. Linear codes offer an intuitive approach

and connection to linear algebra that is extended by the theory of cosets and ideals to

create more structured, powerful codes. Tools from probability and combinatorics offer

more insight into the benefits of cyclic codes and other algebraic extensions and encourage

exploring different topics in algebra to satisfy other constraints or curiosities.

3This section is heavily based on Judson’s exposition of polynomial codes in [3, 354-5]

9

References

[1] Richard W. Hamming. Coding and Information Theory. Prentice-Hall, Inc., 1980.

[2] Raymond Hill. A First Course in Coding Theory. Clarendon Press, 1999.

[3] Thomas W. Judson. Abstract Algebra: Theory and Applications. Orthogonal Publishing

L3C, 2018.

[4] Rudolf Lidl and Gunter Pilz. Applied Abstract Algebra. Springer, 2008.

[5] F.J. MacWilliams and N.J.A. Sloane. The Theory of Error-Correcting Codes. Elsevier

Science Publishers B.V., 1988.

[6] Steven Roman. Coding and Information Theory. Springer-Verlag, 1992.

10

