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Goal

e Transmission across noisy channel
e Encoding and decoding schemes

e Detection vs. correction
Example

o Message: ujug - - Uk, U; € Zo.
e Encoding: wjujuiuiuouotots - - - UpUpUg U -
e Decoding:

0000 — 0O

0001 — 0O

0011 —7?



Measurements

How “good” is a code:

e How many errors are corrected?
e How many errors are detected?
e How accurate are the corrections?

How efficient is the code?

e How easy are encoding and decoding?



e Message: k-bit binary string uguy - - - ux or vector u.

e Codeword: n-bit binary string gz - - - z,, or vector x.
e Encoding function E : Z& — 71

e Decoding function D : Z§ — 75

e Code ¢ =1Im(FE). Also, the set of codewords.

e (n,k)—block code: a code that encodes messages of length k
into codewords of length n.



Characteristics

e The distance between x and y, d(x,y): number of bits in which
x and y differ.

e The minimum distance of a code €, duin(%): minimum of all
distances d(x,y) for all x #y in €.

e The weight of a codeword x, w(c), is the number of 1s in x.

e A code is t-error-detecting if, whenever there are at most ¢

errors and at least 1 error in a codeword, the resulting word is
not a codeword.

e A decoding function uses maximume-likelihood decoding if it
decodes a received word x into a codeword y such that
d(x,y) < d(x,z) for all codewords z # y.

e A code is t-error-correcting if maximum-likelihood decoding
corrects all errors of size ¢ or less.



Preliminary Results

Theorem
A pmin(€) = min{w(x)|x # 0}.
Theorem

A code € is exactly t-error-detecting if and only if dpmin(€) =t + 1.

Theorem

A code € is t-error-correcting if and only if dp,in(€¢) =2t + 1 or
2t 4 2.



Consider the code € given by the following encoding function:

Uy Z1
U T
U
o £:73 > ZS givenby E | |ua| | = =
Uy + U2 Ty
us
Uy + us Ts
Lu2 + u3] LT6 ]

e Parity-check bit: x4 = u; + uo.

Minimum distance: dpin(%) = min{w(x)|x # 0} =3
(1,0,0) = (1,0,0,1,1,0)

(0,1,0) = (0,1,0,1,0,1)

(0,0,1) > (0,0,1,0,1,1)

2-error-detecting

e l-error-correcting



Consider the G =

O = = O O =
= O = O = O
-0 = O O

For some u € Z3,

1 0 0 Uy
0 1 0 Uo
Uy
Gu — 0 0 1 B U3
o1 oo [T |wn s
us
1 0 1 U + us
0 1 1] Lu2 + us |

Then, ¥ = {Gulu € Z3}, so G is the generator matrix for €.



Error-detection

For the parity-check matrix H, consider

Z1
X2
Zs3

T4

5

Il
S = =
_ O =
== O
oS O =
o = O
= O O

Ts

L L6 ]

1+ X9 + 24
= |1 +x23+ 25
To + T3 + Xg

e If Hx = 0, then no errors are detected.

e If Hx # 0, then at least one error occurred.

Thus, ¢ = N (H) C Z3.



Definition

Let H be an (n — k) x n binary matrix of rank n — k. The null space
of H, N(H) C Z%, forms a code ¢ called a linear (n,k)—code with
parity-check matrix H.

Theorem

Linear codes are linear.
Proof.
For codeword x and y, we know Hx = 0 and Hy = 0. Then, if ¢ € Zo,
H(x+y)=Hx+Hy=0+0=0.
H(cex) = cHx = ¢0 = 0.



Theorem

A linear code € is an additive group.

Proof.

For codewords x and y in % and parity-check matrix H,

e HO=0=>%¢#0
e Hx—y)=Hx-Hy=0-0=0=x—-y€%.

Thus, € is a subgroup of Z5. O
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Coset Decoding

If we detect an error, how can we decode it?
For received x, we know x = ¢ + e:

e Original codeword c

e Transmission error e

Then,
Hx = H(c+e) = Hc + He = 0 + He = He.

Minimal error corresponds to e with minimal weight. To decode,

1. Calculate Hx to determine coset.
2. Pick coset representative e with minimal weight.

3. Decode to x — e.
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Assessment

Performance:

e n — k parity-check bits

Flexible minimum distance:

Amin (%) = Cer(g{rgo} w(c).

AS dpin (%) increases, the number of codewords decreases.

e Slow decoding:

Zn 2'n
[Zy - €] = |<;| =58 = 2"k cosets.
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Polynomial Codes

Definition
A code % is a cyclic code if for every codeword ugus ...u,_1, the
shifted word w,,—1ujius . ..u,—_s is also a codeword in €.

Now, consider uguy -+ Up_1 as f(x) = ug +urx + - - + up_1xF=!

where f(z) € Zs[z]/{z* — 1).

Definition

For g(x) € Zs[x] with degree n — k, a code € is a polynomial code
if each codeword corresponds to a polynomial in Zs[z] of degree less
than n divisible by g(z).

A message f(z) = up + urx + - - + up_12¥ 71 is encoded to g(x) f(x).
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Let g(x) = 1 + o + 23 (irreducible). Then

@

Il
S O O O R o
O O O = = O
O = O = = O O
—_ O = = O O O

is the generator matrix that corresponds to the ideal generated by
g(x). Similarly,

0 0

H=1|0 1

1 0 1 1
01 11
101 1 10

O O =

is the parity-check matrix for this code.
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Generalization

If g(z)
g(@)h(z

)

Jo JF T+
= 2™ — 1, then the polynomial code generated by g(z) has

II(nfk)Xn

%’gn—kxni

g0
g1

0
9o
In—k—1
In—k

0

0 0

0 hg

ho O

k,h(l‘):h0+hll’+

0
0

90
g1

In—k
hi
ho

+ hyz®, and

ho
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Results for Polynomial Codes

Theorem
A linear code € in 7% is cyclic if and only if it is an ideal in

Z[z]/{z™ — 1).

Thus, we have a minimal generator polynomial for a code
polynomial code €.

Theorem

Let € = (g(x)) be a cyclic code in Zs[x]/{(x™ — 1) and suppose that w
18 a primitive nth root of unity over Zso. If s consecutive powers of w
are roots of g(x), then dpmi(€) > s+ 1.
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Conclusions

e Linear codes: simple, straightforward, computationally slow.
e Polynomial codes: more structured, faster and more complicated.

e Other considerations:

- More algebra

- Where and when errors occur
- Combinatorics

- Sphere-packing
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