1. Verify that the function T is a linear transformation. (15 points)

$$T: \mathbb{C}^3 \rightarrow \mathbb{C}^2, \quad T \left(\begin{bmatrix} a \\ b \\ c \end{bmatrix} \right) = \begin{bmatrix} a + b \\ b - c \end{bmatrix}$$

2. Answer the following yes/no questions about T. Full credit requires a complete and convincing explanation, a simple “yes” or “no” will get no credit. (P_1 is the vector space of polynomials with degree at most 1, and M_{22} is the vector space of 2×2 matrices.) (15 points)

$$T: P_1 \rightarrow M_{22}, \quad T(a + bx) = \begin{bmatrix} a + 2b & 2a + b \\ -a + b & a + 2b \end{bmatrix}$$

(a) Is T injective?

(b) Is T surjective?

(c) Is T invertible?
3. The linear transformation T below is invertible (you can assume this). Determine a formula for the inverse linear transformation T^{-1}. (P_2 is the vector space of polynomials with degree at most 2.) (25 points)

$$T: P_2 \to \mathbb{C}^3, \quad T(a + bx + cx^2) = \begin{bmatrix} a + 2b + 7c \\ b + 3c \\ a + b + 5c \end{bmatrix}$$

4. Since the linear transformation T in the previous question is invertible, we know that P_2 and \mathbb{C}^3 are isomorphic vector spaces. Compute the sum of $2 + 3x - 5x^2$ and $-1 + x + 9x^2$ in two different ways. First, use the addition defined for P_2. Second, use T and T^{-1} and make use of the addition defined for \mathbb{C}^3. (15 points)
5. Suppose that \(\dim U = m \), \(\dim V = n \), and \(T: U \to V \) is a linear transformation given by \(T(u) = 0 \). (15 points)

(a) Determine the kernel and range of \(T \).

(b) Use your previous answer to compute the nullity and rank of \(T \).

(c) Demonstrate how a theorem can provide a quick check on your answer to the previous part.

6. Suppose that \(T: U \to V \) is a linear transformation and \(B = \{u_1, u_2, u_3, \ldots, u_m\} \) is a basis of \(U \). Prove that if \(C = \{T(u_1), T(u_2), T(u_3), \ldots, T(u_m)\} \) is a linearly independent subset of \(V \), then \(T \) is injective. (15 points)