1. Compute, by hand, the determinant of the matrix A. Include enough detail to show that you have not used Sage. (15 points)

$$A = \begin{bmatrix} 4 & -5 & -2 \\ 2 & 2 & -2 \\ -1 & 2 & 0 \end{bmatrix}$$

2. Is there a diagonal matrix, D, similar to C? Why or why not? If there is such a matrix D, provide it. You may use Sage commands to obtain information about eigenvalues, eigenvectors, and eigenspaces, but be certain to provide an explanation of how your Sage results help you answer the question. (15 points)

$$A = \begin{bmatrix} 53 & 8 & 32 & 8 & 136 & -112 \\ 28 & 33 & 24 & 52 & 28 & 32 \\ -63 & -36 & -43 & -55 & -111 & 60 \\ -21 & -12 & -16 & -16 & -45 & 12 \\ 0 & 4 & 0 & 8 & -11 & 8 \\ 7 & 0 & 4 & -1 & 19 & -19 \end{bmatrix}$$
3. Consider the matrix F below. You can use Sage on this question to manipulate and row-reduce matrices, but the only new commands you can use as justification will compute and factor the characteristic polynomial. (40 points)

$$
F = \begin{bmatrix}
-2 & -6 & 5 & 4 \\
-1 & 3 & -5 & -4 \\
3 & 7 & -13 & -13 \\
-3 & -7 & 10 & 10 \\
\end{bmatrix}
$$

(a) Find the eigenvalues of F and the algebraic multiplicities.

(b) Find the eigenspaces of F and the geometric multiplicities.

(c) Is F diagonalizable? Why or why not?
4. Suppose A is a square matrix whose determinant is 27. Form a matrix B, of the same size, by starting with A and relocate the first row to become the last row. (15 points)

(a) What is the determinant of B, if A is an 800×800 matrix? Explain your reasoning.

(b) What is the determinant of B, if A is an 801×801 matrix? Explain your reasoning.

(c) Formulate a careful and self-contained theorem that you now believe to be true, based the two previous parts. You do not need to supply a proof.

5. Suppose that A and B are similar matrices. Prove that $A^3 + 6A^2 + 3A$ and $B^3 + 6B^2 + 3B$ are similar matrices. (15 points)