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Abstract
This paper surveys the properties of valuation rings and discrete valuation rings

from the perspective of a consequence of a valuation. We begin with an introductory
glance at valuations before moving on to study the properties of valuation rings and
discrete valuation rings. We focus primarily on proving properties of valuation rings,
culminating in equivalences for both valuation rings and discrete valuation rings. The
equivalences then provide motivation for describing a method of recovering the valuation
associated with a valuation ring that was not constructed from a valuation.

1 Introduction

From our perspective, a valuation ring is an algebraic structure that arises from a particular
type of function called a valuation. Valuations provide a way to assign sizes to the elements
of a field in a way that is consistent and allows us to compare elements by their sizes. One
can extend this notion to define the distance between two elements which induces a topology
(for more on this see [6]).

Valuation rings find use in a variety of mathematical fields. In particular, discrete valua-
tion rings are especially useful in number theory as they are unique factorization domains –
the ability to factor a number uniquely is of great importance in number theory. Other fields
in which valuation rings are applied include algebraic and analytic geometry, and complex
analysis [9].

Aside from their applications in various fields of mathematics, valuation rings are intrigu-
ing to study in their own right due to their interesting structure. Our purpose here is to
give an introductory survey of the properties of valuations and valuation rings that is ac-
cessible to the student familiar with undergraduate abstract algebra. We begin with a brief
overview of valuations as a lead into studying the properties of valuation rings. Though
we will primarily conceptualize valuation rings as an algebraic structure arising from the
definition of a valuation, there are several equivalent conditions for valuation rings. Thus,
our study will culminate in the process by which we can recover, up to isomorphism, the
valuation associated to a particular valuation ring that did not arise from the definition of a
valuation.
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2 Valuations

It is often useful to assign sizes to the elements of a field to obtain some metric for measuring
these field elements. In order for our measurements to be useful, we would like to be able to
say definitively whether two given field elements are larger or smaller than one another, or
have the same size. Thus, we need a function from a field to a totally ordered set. We will
take our codomain to be a group.

Definition 2.1. Let F be a field, F ∗ = F r {0}, and G be a totally ordered abelian group
under addition. We define a valuation on F to be a map ν : F ∗ → G satisfying:

1. ν(ab) = ν(a) + ν(b) for all a, b ∈ F ; and
2. if a+ b 6= 0, then ν(a+ b) ≥ min{ν(a), ν(b)} for all a, b ∈ F .

Additionally, when we wish to extend ν to all of F , we write ν : F → G ∪ {∞} and use the
convention ν(0) = ∞. (This clearly satisfies the above conditions.) In this case, ∞ is now
the largest element of G and respects the usual conventions when handling the symbol; that
is, ∞+ k =∞ for all k ∈ G [5, 6].

Definition 2.2. If ν is surjective onto G = Z, then ν is a discrete valuation [2].

Remark. Condition 1 is equivalent to saying ν is a group homomorphism from the multi-
plicative group of F , F ∗, to G [3].

One may wonder why we require G to be an additive group. In fact, this is not required.
There is an equivalent definition of a valuation for the case where G is a multiplicative group;
however, this variation occurs significantly less frequently in the literature on valuation rings.
Thus, we will restrict our study to the case where G is an additive group [5].

We will maintain the notation of Definition 2.1 throughout our study of valuation rings
so that ν will denote a valuation, F will denote the domain of ν, G will denote the codomain
of ν, and for any ring R, R∗ = R r {0}. We will often use F ∗ when we wish to avoid
complications that may arise by considering ν(0). The reader should keep in mind that we
are always able to extend ν to all of F with the convention ν(0) =∞, even when we express
a particular valuation as ν : F ∗ → G. Note that some authors choose instead to maintain
the notation ν : F → G ∪ {∞}; however, this notation can become cumbersome for our
purposes.

2.1 Properties of Valuations

As our primary view of valuation rings will be from the perspective of an algebraic structure
arising from a valuation, it is integral to our study to understand some of the basic prop-
erties of valuations. The following propositions ought to build intuition for the behavior of
valuations and prepare the reader for the proofs in Section 3. For more on valuation theory,
we refer the reader to [4, 6].

Proposition 2.3. For any valuation ν, ν(1) = 0.

Proof. Let a ∈ F ∗. Then ν(1) = (ν(1) + ν(a))− ν(a) = ν(1a)− ν(a) = ν(a)− ν(a) = 0.
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This result fits nicely with our conception of a valuation as a way to measure the size of field
elements, as we do not want repeated multiplication by 1 to contribute to the valuation of
a. Additionally, recall that ν is a group homomorphism from a multiplicative group to an
additive group. From this view it must be the case that ν(1) = 0.

Proposition 2.4. Let k ∈ Z. Then ν(ak) = kν(a) for all a ∈ F ∗.

Proof. When k ≥ 0 this follows easily from condition 1 of Definition 2.1, so we will only
prove this directly for k = −1. Consider ν(a) + ν(a−1) = ν(aa−1) = ν(1) = 0. Thus
ν(a−1) = −ν(a).

We now provide two preliminary examples of valuations before proceeding to study the
structures associated with a valuation.

Example 2.5. For any field F , we can define the trivial valuation ν : F ∗ → {0}, ν(x) = 0,
with the convention ν(0) =∞ [5].

Example 2.6. Fix p ∈ Z where p is prime. Then any element r
s
∈ Q∗ can be written uniquely

as r
s

= pk a
b
where a

b
∈ Q∗ and p - ab. This suggests a natural valuation νp : Q∗ → Z defined

by νp( rs) = k, where νp measures the extent to which p is a factor of r
s
. This valuation occurs

frequently in number theory and is called p-adic valuation. p-adic valuation is a discrete
valuation, which may come as no surprise given that the codomain of νp is Z; however, we
must show that νp is onto. Observe that for any k ∈ Z, we simply need to produce a rational
number r

s
∈ Q∗ that contains k factors of p. This is always possible, as we can simply let

r
s

= pk. Of course, there are also many other choices we could have made [6].

3 Valuation Rings

We are now prepared to begin our study of valuation rings. However, rings are not the only
algebraic structure that arise from the definition of a valuation. Being a map from a field to
a group, it should come as no surprise that we can define substructures of both the domain
and codomain of a valuation. We begin with codomain.

Definition 3.1. The image of ν, ν(F ∗), is a subgroup of G called the value group of ν.

The proof that ν(F ∗) is a group is not difficult, but we will provide it anyway. Addition-
ally, for the reader that is unfamiliar with valuations, the proofs in this section should give
an example of how valuations will be used in later proofs.

Proof. The identity of ν(F ∗) is ν(1) = 0. For any ν(a) ∈ ν(F ∗), we have 0 = ν(1) =
ν(aa−1) = ν(a) − ν(a). Thus the inverse of ν(a) is ν(a−1). Let ν(a), ν(b) ∈ ν(F ∗). Then
ν(a) + ν(b) = ν(ab) ∈ ν(F ∗) and so ν(F ∗) is closed.

Definition 3.2. The set V = {a ∈ F | ν(a) ≥ 0} is a subring of F called the valuation
ring of ν [5].

Definition 3.3. If ν is a discrete valuation, then the valuation ring of ν is called a discrete
valuation ring, abbreviated DVR [2].
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It is also common to refer to V as a valuation ring of F . Notice that V is unique with
respect to ν but not with respect to F . Again, the proof that V is a ring is not difficult, but
we will include it.

Proof. We can see that both 1 and 0 are in V as ν(1) = 0 and ν(0) = ∞. To see that V is
closed under addition and multiplication, let a, b ∈ V so that ν(a) ≥ 0 and ν(b) ≥ 0. Then
ν(ab) = ν(a) + ν(b) ≥ 0 and ν(a+ b) ≥ min{ν(a), ν(b)} ≥ 0.

Proposition 3.4. V is an integral domain.

Proof. Let a, b ∈ V such that ab = 0. Then ∞ = ν(ab) = ν(a) + ν(b). Thus, it must be the
case that either ν(a) =∞ or ν(b) =∞, and so we have either a = 0 or b = 0.

We now return to our examples from the previous section to give examples of the struc-
tures arising from a particular valuation.

Example 3.5. For the trivial valuation ν : F ∗ → {0}, ν(x) = 0, the value group of ν is {0}
and the valuation ring of ν is F .

This constitutes a proof that any field is also a valuation ring. However, this is not very
interesting and we often wish to restrict our study to valuation rings that are not also fields.

Example 3.6. Recall that p-adic valuation is the map νp : Q∗ → Z defined by
νp(

r
s
) = νp(p

k a
b
) = k where p - ab, and that νp is a discrete valuation. Thus the value group

of νp is Z. Now, assuming r
s
is in lowest terms, the valuation ring of νp is

V = { r
s
| p - s} ∪ {0}. This follows because if p | s then there are no factors of p in r and

thus νp( rs) < 0. The elements of V are called the p-adic integers and are denoted Z(p) [6].

3.1 Properties of Valuation Rings

Valuation rings have many interesting properties, and we are now prepared to begin our
survey of them. However, we will not provide a comprehensive list of these properties as
such a task is outside of the scope of this paper and requires knowledge of topics that we do
not assume the reader to be familiar with, such as localization and integral closure. For more
on these topics and their applications to the study of valuation rings, we refer the reader to
[3, 5, 9].

Throughout this section we will assume that V is the valuation ring of ν : F ∗ → G. Recall
that whenever we need 0 we simply extend ν to all of F with the convention ν(0) =∞.

Proposition 3.7. For all a ∈ F ∗, a ∈ V or a−1 ∈ V (inclusive).

Proof. Since ν(a) + ν(a−1) = ν(aa−1) = ν(1) = 0, it follows that ν(a) ≥ 0 or ν(a−1) ≥ 0.
Thus, we have a ∈ V or a−1 ∈ V .

Corollary 3.8. The group of units of V is U = {a ∈ V | ν(a) = 0}.

Proof. Let a ∈ V with a 6= 0. If a ∈ U then a−1 ∈ U by definition, and so a−1 ∈ V . Thus
ν(a−1) = −ν(a) ≥ 0, but this is only the case if ν(a) = −ν(a) = 0 [5].
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Proposition 3.9. For all a, b ∈ V we have ν(a) ≤ ν(b) if and only if b ∈ 〈a〉.

Proof. Clearly this is true when a = 0, so we will assume a 6= 0.
(⇒) If ν(a) ≤ ν(b) then ν(ba−1) = ν(b)− ν(a) ≥ 0, so ba−1 ∈ V . Thus b = (ba−1)a ∈ 〈a〉.
(⇐) If b ∈ 〈a〉 then, for some c ∈ V , b = ca, and ν(b) = ν(c) + ν(a) ≥ ν(a) [5].

Corollary 3.10. For all a ∈ V , ν(−a) = ν(a).

Proof. Clearly −a ∈ 〈a〉, and so ν(a) ≤ ν(−a). Similarly, ν(−a) ≤ ν(a). Thus
ν(−a) = ν(a).

Consider what this result means under our conceptualization of a valuation as a way to
measure the size of a field element. Analogous to absolute values (though valuations are not
absolute values), a field element has the same size as its additive inverse. Considering our
example of p-adic valuation, this result is precisely what we would expect. For any nonzero
rational number r, the extent to which p is a factor of r is precisely the same as the extent
to which p is a factor of −r.

Proposition 3.11. The field of fractions of V is F .

Proof. Since V ⊆ F , it is sufficient to show that for all a ∈ F , a 6= 0, there exists some
b ∈ V such that ab ∈ V . To see this, observe that if r = ab, then rb−1 = a ∈ F and so we
can express a as r/b; that is, we can express any nonzero element in F as the quotient of
two elements from V . Let a ∈ F such that a 6= 0. Then by Proposition 3.7, either a ∈ V or
a−1 ∈ V . If a ∈ V , then aa ∈ V by closure. If a−1 ∈ V , then aa−1 = 1 ∈ V [2].

Proposition 3.12. V has a unique maximal ideal M = {a ∈ V | ν(a) > 0}.

Proof. Clearly 0 ∈M , so M is nonempty. Now, let a, b ∈M and r ∈ R. Then
ν(a + b) ≥ min{ν(a), ν(b)} > 0 and ν(ab) = ν(a) + ν(b) > 0. Thus M is a subring of V .
Also, ν(ra) = ν(r) + ν(a) > 0. Thus M is an ideal of V . Now, let I be an ideal of V such
that M ⊂ I. Then I contains an element with valuation 0, which is a unit by Corollary 3.8,
so I = V . Thus M is maximal. All that is left is to show that M is unique. Notice that
M is the set of all nonunits of V . Suppose we have another maximal ideal J of V . Then J
must contain no units else J = V , so J ⊆ M . Since both M and J are maximal, we have
J = M [5].

Definition 3.13. Any commutative ring with a unique maximal ideal is called a local ring
[5].

Proposition 3.14. The ideals of V are totally ordered by set inclusion.

Proof. Let I and J be ideals of V such that I 6⊂ J . Let a ∈ I r J (so a 6= 0), and let b ∈ J .
We want to show that b ∈ I. If b = 0 then we are done, so assume b 6= 0. Now, consider
ba−1. By Proposition 3.7, we have ba−1 ∈ V or ab−1 ∈ V . If ab−1 ∈ V , then (ab−1)b = a ∈ J
which is a contradiction. Thus ba−1 ∈ V and so (ba−1)a = b ∈ I [2].
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3.2 Properties of Discrete Valuation Rings

As discrete valuation rings are a specific case of valuation rings, their properties are a bit
more restrictive than those of general valuation rings. For instance, DVRs are Euclidean
domains but not fields. Although all Euclidean domains are principal ideal domains (PIDs)
and all PIDs are Noetherian, we will prove each of these properties separately, as their proofs
provide insight into the structure of discrete valuation rings. In particular, DVRs have a
special element called a uniformizer which is guaranteed by the surjectivity of a discrete
valuation. This element will play a pivotal role in the proofs of this section.

Throughout this section we will assume V is the discrete valuation ring for ν : F ∗ → Z.

Definition 3.15. Any element t ∈ V with ν(t) = 1 is called a uniformizer of V [2].

Proposition 3.16. If t is a uniformizer of V , then t is irreducible.

Proof. Suppose t factors as t = ab where a, b ∈ V . Then 1 = ν(t) = ν(a) + ν(b). Thus,
either ν(a) = 0 or ν(b) = 0 [1].

Corollary 3.17. Let t be a uniformizer of V . Then t′ is a uniformizer of V if and only if t
and t′ are associates [10].

Proposition 3.18. Let M be the unique maximal ideal of V and let t ∈ V . Then M = 〈t〉
if and only if t is a uniformizer of V .

Proof. (⇐) Suppose ν(t) = 1. Since M is the unique maximal ideal, 〈t〉 ⊆ M . Since ν is
discrete, we can write M = {a ∈ V |ν(a) ≥ 1}. Now, let a ∈ M so that ν(a) ≥ 1. Consider
ν(at−1) = ν(a)− ν(t) ≥ 1− 1 = 0, and so at−1 ∈ V . Consequently, (at−1)t = a ∈ 〈t〉.
(⇒) Suppose M = 〈t〉. By surjectivity of ν, there exists some z ∈ M such that ν(z) = 1.
Let z = ct for some c ∈ V . Then 1 = ν(z) = ν(c) + ν(t), so we have ν(t) = 1− ν(c) ≥ 1. If
ν(c) 6= 0, then ν(t) < 0 which gives a contradiction. Thus ν(t) = 1 [2].

Corollary 3.19. V is not a field.

Proof. The only maximal ideal of a field is the zero ideal 〈0〉, as all nonzero field elements
are units. Let M = 〈t〉. Then ν(t) = 1 6= ∞ and so t 6= 0. Thus the maximal ideal of V
cannot be 〈0〉 [10].

Proposition 3.20. V is Noetherian.

Proof. Let I 6= 〈0〉 be an ideal of V . Then for some a ∈ I there is a least integer k such that
ν(a) = k. Now let b, c ∈ I and suppose b = ac. Then ν(b) = ν(a) + ν(c) = k + ν(c) ≥ k
because c ∈ V . Therefore, I contains every b ∈ V such that ν(b) ≥ k, and so the only ideals
of V are Ik = {b ∈ V | ν(b) ≥ k}. Recall that the ideals of V are totally ordered. Thus these
ideals form a chain V = I0 ⊃ I1 ⊃ I2 ⊃ · · · ⊃ 〈0〉 and so V is Noetherian.

Corollary 3.21. V is a PID.

Proof. Let t ∈ V be a uniformizer. Then in the previous proof we can take Ik =
〈
tk
〉
. By

Proposition 3.18, we can say then that every nonzero ideal of V is a power of M [3].
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Proposition 3.22. V is a Euclidean domain.

Proof.
1. For all nonzero a, b ∈ V we have ν(a) ≤ ν(ab) by Proposition 3.9, since ba ∈ 〈a〉.
2. Let a, b ∈ V with b 6= 0. If ab−1 ∈ V then we can write a = (ab−1)b + 0. If ab−1 6∈ V

then ν(ab−1) = ν(a)− ν(b) < 0, so we have ν(a) < ν(b). Thus we can write a = 0b+ a
[7].

The properties we have explored throughout this section suggest a natural conceptual-
ization of a discrete valuation ν. Fix a uniformizer t of the valuation ring V of ν. Then for
any x ∈ F ∗, we can write x uniquely as x = atk where k = ν(x) and a ∈ F ∗ such that t - a
[10].

3.3 Equivalences

Although we have conceptualized valuation rings as arising from a valuation, there are many
equivalent conditions for both valuation rings and discrete valuation rings. As the following
theorems illustrate, it is not unlikely that we will find ourselves with a valuation ring which
we did not construct from a valuation.

Theorem 3.23. For an integral domain R with field of fractions K, the following are equiv-
alent.

1. There is a valuation ν of K for which R is the valuation ring.
2. For all a ∈ K, either a ∈ R or a−1 ∈ R.
3. The ideals of R are totally ordered by set inclusion.

Proof. The proof of this theorem can be found in [8]. The reader should note that many
authors take (2) as the definition of a valuation ring and give (1) as a theorem.

Theorem 3.24. Let R be a Noetherian integral domain with unique maximal ideal M 6= 〈0〉;
that is, R is not a field. The following are equivalent.

1. R is a DVR (under our definition).
2. R is a PID.
3. M is principal.
4. Every nonzero ideal is a power of M .

Proof. The proof of this theorem can be found in [2]. Again, many authors take the definition
of a discrete valuation ring to be a local PID, proving our definition as a theorem.

Now that we have equivalent characterizations of discrete valuation rings, let us return to
the natural conceptualization of a discrete valuation mentioned at the close of the previous
section. If we find ourselves with a discrete valuation ring V without an associated valuation,
there is then a natural valuation to define. Let K be the field of fractions of V and let t ∈ V
be a prime element. Then we can express any x ∈ K∗ uniquely as x = atk where k ∈ Z and
a ∈ K∗ such that t - a. Now we can define νt : K∗ → Z by νt(x) = k. This is in fact a
generalization of p-adic valuation [5].
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4 Recovery

As we saw in the previous section, it is entirely possible to have a valuation ring that we
did not construct directly from a valuation. The following theorem guarantees that we can
recover the associated valuation, up to isomorphism, and provides us with a method for
doing so.

Theorem 4.1. Let V be the valuation ring of a valuation ν : F ∗ → G. Then ν can be
recovered completely from V up to isomorphism.

Proof. By Corollary 3.8, ker ν = U , the group of units of V , so by the First Isomorphism
Theorem we have ν(F ∗) ∼= F ∗/U . Note that both F ∗ and U are groups under multiplication
and so F ∗/U is a factor group under multiplication. Now, define ν̄ : F ∗ → F ∗/U to be
the canonical homomorphism [7]. For ν̄ to be a valuation, F ∗/U must be totally ordered.
However, since F ∗/U is isomorphic to ν(F ∗), a subgroup of G, F ∗/U inherits the total order
of G. Explicitly, the total order of G is defined as, for a, b ∈ F ∗, ν(a) ≤ ν(b) if and only
if ba−1 ∈ V . This follows because ν(a) ≤ ν(b) if and only if 0 ≤ ν(b) − ν(a) = ν(ba−1).
Thus, for r1U, r2U ∈ F ∗/U , we have r1U ≤ r2U if and only if r2r−11 ∈ V . Finally, for
ν and ν̄ to be isomorphic valuations, there must be some order-preserving homomorphism
φ of their respective value groups such that φ ◦ ν̄ = ν. This will be the homomorphism
φ : F ∗/U → G defined by φ(r1U) = ν(r1), which turns multiplication in F ∗/U into addition
in G. To see that this is in fact a homomorphism of groups, let r1U, r2U ∈ F ∗/U . Then
φ((r1r2)U) = ν(r1r2) = ν(r1) + ν(r2) = φ(r1U) + φ(r2U). We must also show that φ
is well-defined. Suppose r1U = r2U . Then for some u ∈ U , r1u = r2. Consequently,
φ(r1U) = ν(r1) = ν(r1) + ν(u) = ν(r1u) = ν(r2) = φ(r2U). All that is left to show is that
φ is order-preserving, but this follows directly from our above discussion on the ordering of
F ∗/U . Since r1U ≤ r2U if and only if r2r−11 ∈ V if and only if ν(r1) ≤ ν(r2), we have that
φ is order-preserving.

This construction can be performed without having first known the valuation ν : F ∗ → G
by using the field of fractions and group of units of a given valuation ring, since Proposition
3.11 tells us that the field of fractions of any valuation ring is the domain of the associated
valuation. Note that we cannot recover all of G unless ν is surjective, we can only recover
the value group of ν [5].

5 Conclusion

This concludes our survey of the properties of valuations rings. We began with a useful tool –
a function that provides some notion of size within a field – and constructed further algebraic
structures with that tool. We discovered the many interesting features of the structure of
valuation rings, both general and discrete, and provided equivalent characterizations for
these structures, culminating in a method for recovering the tool we began with.
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