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Introduction

Braid groups were introduced by Emil Artin in 1925, and by now play a role in various parts of
mathematics including knot theory, low dimensional topology, and public key cryptography.
Expanding from the Artin presentation of braids we now deal with braids defined on general
manifolds as in [3] as well as several of Birman’ other works.

1 Preliminaries

We begin by laying the groundwork for the Artinian version of the braid group. While braids
can be dealt with using a number of different representations and levels of abstraction we
will confine ourselves to what can be called the geometric braid groups.

Let E3 denote Euclidean 3-space, and let E20 and E21 be the parallel planes with z-
coordinates 0 and 1 respectively. For 1 ≤ i ≤ n, let Pi and Qi be the points with coordinates
(i, 0, 1) and (i, 0, 0) respectively such that P1, P2, . . . , Pn lie on the line y = 0 in the upper
plane, and Q1, Q2, . . . , Qn lie on the line y = 0 in the lower plane.

An n-braid, specifically a geometric n-braid, is comprised of n strands (s1, s2, . . . , sn),
such that si connects the point Pi to the point Qπ(i), for some π where π is the permutation
of the braid; if π is trivial then the braid is said to be a pure braid. Furthermore:

• Each strand si intersects the plane z = t exactly once for each t ∈ [0, 1].
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• The strands s1, s2, . . . , sn intersect the plane z = t at n distinct points for each t ∈ [0, 1].

Simply, an n-braid is comprised of n strands wich cross each other a finite number of
times without intersecting, and travle strictly “downwards”.

Figure 1.1: An example α of a 5-Braid

For n-braids α and β there is a natural operation of composition as seen in Figure 1.2.1

The resulting braid αβ is constructed by identifying Qi of α with Pi of β, thereby creating
continuous strands. This operation defines a group operation on the set of n-braids.

* =

Figure 1.2: Composition of Braids in B3

The group of n-braids is denoted Bn with PBn denoting the subgroup of Bn formed by
braids with trivial permutations, π(i) = i, called the pure braid group. The identity of
Bn is the braid consisting of n parallel strands with no crossings, while the inverse β−1 of
a braid β is the vertical reflection of β.

1Note, in graphical representations of braids we will use “∗” to denote composition of braids while when
dealing with braids algebraically we will use the convention of adjacency.
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β * β−1 = ββ−1 = In

Figure 1.3: Inverse and Identity in B2

When considering braids, strands can be deformed continuously without altering the
structure of the braid, as can be seen in Figure 1.3 with ββ−1 = In where In denotes the
identity braid in n-strands. When dealing with the braids it can be helpful to consider the
simplest form of each braid, to this end we can comb the braid meaning we will continuously
deform the strands until there are the fewest possible crossings of strands. A braid that is
of this simple form can be referred to as a combed braid.

Notice then that any n-braid can be represented as the composition of a finite number
of elementary braids σ1, . . . , σn−1 and their inverses where σi denotes a braid differentiated
from Im solely by the ith strand crossing over the (i + 1)th strand. Thus, σ−1

i is the braid
where the ith strand crosses under the (i+ 1)th strand.

Example 1.4. Consider Figure 1.1, α = σ1σ
−1
3 σ2σ

−1
4 σ−1

1 σ−1
3 .

We can then note that given i and j, if i and j differ by more than one, the elementary
braids σi and σj commute. It is not generally the case that arbitrary braids commute in Bn
for n ≥ 3.

Theorem 1.5 (Center of the Braid Group). For n > 2, the center of Bn is 〈∆2〉 where

∆ = σ1(σ2σ1)(σ3σ2σ1) · · · (σn−1σn−2 · · ·σ1).

Notice here that ∆ reverses the order of points (π(i) = 1 + n− i), and thus ∆2 preserves
the order of points (π(i) = i).

Figure 1.6: ∆2 for B3
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Remark 1.7 (Center of B1 and B2). The trivial braid group B1 consists solely of I1, thus it
is obvious that the center of B1 is B1 as the identity is always in the center. The center of
B2 (which has only two nontrivial braids) is 〈σ1〉.

Up until now we have been addressing what are called open braids. Howeverm by
wrapping a braid once around an axis and identifying Pi with points Qi we get what is
called a closed braid. On closed braids we allow the same type of deformations as on open
braids, namely those that are continuous without causing the strands to intersect.

The problem of classification of closed braids is a group theoretic one in which two closed
braids, A and B can be considered equal if an only if B = XAX−1 for some open braid X.

2 Braid Groups as Extensions of Symmetric Groups

Braid groups naturally give rise to a surjective group homomorphism γ : Bn → Sn.

Definition 2.1. Let β be a n-braid, given that strands connect points Pi to Qπ(i), we define
a homomorphism γ : Bn → Sn such that

γ(β) =

(
1 · · · i · · · n

π(1) · · · π(i) · · · π(n)

)
This homomorphism is in essence the result of disregarding how the strands cross.

Example 2.2. Consider Figure 1.1, γ(α) = (14)(35) in cycle notation.

Remark 2.3 (Disjoint Permutations Commute). By “disjoint” elementary braids and dis-
joint cycles commuting, the image of composition of braids is the same as the composition
of images of braids.

Also similar to the symmetric groups, the braid groups can be easily coerced into larger
groups, i.e. there is a natural way to fit Bn into Bn+1. In both cases additional “elements”
may be included.

For instance, a cycle representation of a permutation on n letters in the symmetric group
can be applied to a set of m letters, m > n, simply by considering the unlisted numbers as
being within their own cycle. For example, the cycle (1 3 2) representing a permutation of
three letters can also represent a permutation on four letters as in S4, (1 2 3) = (1 2 3)(4).
Similarly, consider an arbitrary n-braid, and then add a single trivial strand connecting
points Pn+1 and Qn+1. In both cases there is a natural way to expand elements to elements
of the larger group.There are many interesting results regarding braid groups which while
not difficult to understand do not fall nicely into a designated place, here we will address one
such interesting results which concerns the presentation of a specifically generated subset of
Bn.

Conjecture 2.4 (The Tits Conjecture). Let Ti = σ2
i , then G ⊂ Bn has the presentation

〈T1, · · · , Tn−1 | TiTj = TjTi if |i− j| ≥ 2〉.

The generalized form of the Tits Conjecture (the generalization is in regard to the arbi-
trary choice of power) was proved in 2001 by J. Crisp and L. Paris, see [4].
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3 Cryptography

In the early 2000s a number of public key cryptosystems based on combinatorial group
theory problems, including those concerning braid groups, were proposed. Part of this push
to diversify the tools for encryption was that as quantum computers come closer to reality
many current systems will be able to be broken in subexponential time.

As such, in combination with a desire to prevent wide scale security failure should the
current cryptosystem(s) be broken, there is an increasing need for a wider range of more
secure cryptosystems. In essence, we should not be placing all of our encryption keys in one
basket.

The cryptosystem seeming to be the most written upon using braid groups was introduced
by Ko et. al. [11] in 2000. The problem used as the base of the cryptosystem was base on
a Diffie-Hellman like problem: for a ∈ Bn, x ∈ G1, y ∈ G1 where G1, G2 ⊂ Bn commute with
each other, given (a, x−1ax, y−1ay), find y−1x−1axy.

After an algorithm was proposed to solve this problem in a reasonable time frame with
relative accuracy a revised problem was released which can be roughly stated as: given
(a, x1ax2) find z1, z2 such that z1az2 = x1ax2 where a ∈ Bn and x1, x2, z1, z2 ∈ G ⊂ Bn.

Lee and Park’s paper [12] proposes two improvements to the algorithm solving the original
problem, one of which is more efficient with the same success rate, while the other has a
higher success rate at a lower efficiency. While the details of solving the BPKE problem
proposed by Ko et. al. is outside the scope of this paper we will give an outline.

The general approach to solving group theoretic problems in braid groups, as it pertains
to cryptosystems, is to transform the given braid representation into an equivalent represen-
tation in which the problem is easier to solve and then lifting the result back to the initial
representation. There are a number of ways to do this, one way which was addressed in Lee
and Park’s paper was to utilize a braid representation called the “Burau Representation”
which utilize matrices
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