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Whoever came up with this...
Has to be the geekiest geek of
all.

Grandmaster Flash

Abstract

Invented in 1974 by Ernö Rubik, a professor of architecture living
in Budapest, Hungary, the Rubik’s Cube is now one of the most pop-
ular toys in the world. For its relative simplicity, it has an incredible
amount of mathematical complexity, which can be best appreciated
through an understanding of the underlying group structure of the
cube. This paper is intended to give a thorough comprehension of
how the Rubik’s Cube Group can be constructed with just an under-
standing of some group theory and the cube itself. In addition, it will
explore some of the subgroups of the Rubik’s Cube Group that are
particularly relevant to solving the cube.

1 Introduction

When Ernö Rubik set out to build his cube, it was intended to be a an
impossible structure. It could be twisted and rotated in every direction, but
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never fell apart. What he could not have known is that he had also created
a toy that would one day go on to sell millions, and an object of considerable
interest to mathematicians.

In fact, we partially have mathematicians to thank for the spread of the
Rubik’s Cube out of Hungary, as it was Hungarian mathematicians bringing
their own cubes to international conferences that originally sparked the toy’s
appeal across nations. That interest has not waned in the last forty years,
and even today new discoveries about the cube are being made, particularly
now that computer simulations can run more and more quickly by the passing
day. [1]

2 Vocabulary

Before we can dive into what sorts of structures give rise to the group itself,
it’s going to be important to lay out some of the basics of both group the-
ory, and the notation and vocabulary used by “Cubers”, those particularly
devoted to the study or competitive solving of the Rubik’s Cube. At this
point, if you happen to own a Rubik’s Cube, it will be helpful to have it on
hand.

A Cube itself is made out of 27 small sections called “cublets”. Each
cubelet comes in one of three varieties, corner, side, and center cubelets.

A Cube itself has 6 faces, each broken up into 9 small sections called
“facelets”. Corner, edge, and center cubelets can be distinguished by their
number of facelets. Corners have three, edges two, and centers just one. [2]

While a solved cube appears relatively simple, there are in fact 43252003274489856000 =
8!× 37 × (12!/2)× 211 possible unique states that a cube can be in.

As for the mechanics of the cube, a cursory observation reveals that each
of the cube’s six faces can rotate at 90◦ increments, allowing for an infinite
number of rotations in any combination. We can denote these rotations as
follows:

First begin by holding a cube in front of you. Without changing the

• F indicates a clockwise rotation of the side side facing you.

• B indicates a clockwise rotation of the side facing directly away from
you.

• U indicates a clockwise rotation of the side facing straight up

• D indicates a clockwise rotation of the side facing straight down.

• R indicates a clockwise rotation of the side facing to your right.
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• L indicates a clockwise rotation of the side facing to your left.

For any given rotation A, A−1 represents a rotation of the same face
rotated by A in the counter-clockwise direction. For any series of rotations
performed in sequence, they will be concatenated with the symbol ’∗’. For
example, “rotate the top face, then right face” is notated as “U∗R”. Any
rotation A repeated n times we write as “An”. Lastly, let 1 = A0 represent
the identity rotation, which rotates the side by 0◦.

This is a slightly modified version of the Singmaster Notation for cubing
developed by David Singmaster. By using a “−1” instead of a prime symbol
to indicate the inverse of a rotation, we can more easily make the transition
into the group theory underlying the cube. [2]

With some experimentation, a few properties can be determined. First,
for any rotation A, A∗A−1 is the same as having performed no action at all.
Additionally, for any rotation A, A3 is the same as A−1. It’s also clear that
for any two adjacent faces, A∗B is not the same as B∗A. Lastly, no matter
what kinds of rotations are made, the center facelets always remain in the
same positions relative to each other.

3 Permutation Groups

At this point, it should be clear that there is some kind of group action
happening on the cube, so let’s briefly go over some of the things we’ll need
moving forward.

Recall that the permutations of a set form a group, and the following
theorem is true:

Theorem 1. The symmetric group on n letters, Sn, is a group with n! ele-
ments, where the binary operation is the composition of maps.

Now imagine a Rubik’s Cube with each of the non-center facelets labeled
1 through 48. By performing rotations, we can change the positions of each of
the numbered facelets. The discerning algebraist should be able to recognize
this as a set, and a collection of permutations on that set.

With this in mind, let’s redefine some of the rotations that we gave names
to earlier. First, let S48 be the Symmetric group on 48 elements. Then, for
the symbols R, L, D, F, U, and B, let

R = (3,38,43,19)(5,36,45,21)(8,33,48,24)(25,27,32,30)(26,29,31,28)
L = (1,17,41,40)(4,20,44,37)(6,22,46,35)(9,11,16,14)(10,13,15,12)
D = (14,22,30,38)(15,23,31,39)(16,24,32,40)(41,43,48,46)(42,45,47,44)
F = (6,25,43,16)(7,28,42,13)(8,30,41,11)(17,19,24,22)(18,21,23,20)
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U = (1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19)
B = (1,14,48,27)(2,12,47,29)(3,9,46,32)(33,35,40,38)(34,37,39,36)
Using the cycle notation for permutations.
You are free to confirm for yourself that these permutations do in fact

represent the six rotations of the cube, but I would recommend taking it at
face value, for now. From this, it should be clear that the permutation group
generated by our six side rotations, 〈R, L, D, F, U, B〉, is the Rubik’s Cube
Group.

While this does not tell us much on its own, it does provide for us a
mathematical basis for talking about the Cube. A few simple conclusions
can be made from here.

For example, (and this is somewhat obvious) the rotations of a single side
are isomorphic to the cyclic group on 4 elements, Z4. To show this, suppose
φ : Z4 → G, where G = 〈 R 〉 such that φ(x) ={

() x = 0
Rx x 6= 0

With a small amount of computation, or the aid of a convenient mathematics
software, it can be easily shown that φ is an isomorphism. Similarly, this can
be shown for the other five generators. [3]

This is just one of countless subgroups of the Rubik’s Cube Group that
we could explore. In fact, every element you can create through a series
of possible rotations generates a subgroup. Considering that the number of
possible permutations of the Cube is upwards of forty-three quintillion, it is
not feasible to explore all of them here. However, we can study some small,
simple subgroups in closer detail.

4 The Slice Group

Suppose that with a cube held in front of you, you rotate both the right
and left sides up, or perform the permutation R∗L−1(=L−1R). It might be
easier to instead imagine rotating the center “slice” of the cube down by a
quarter turn. Consider the subgroup generated by this rotation, along with
the rotations U∗D−1 and F∗B−1 This subgroup, called the Slice Group, is
of significance to Cubers because it can be used to easily create interesting
and symmetric flower like patterns, but can also be explored by us in some
amount of depth. For example, let’s see if we can determine a more detailed
look at the structure of H.

First, let’s recall a definition that will be important for doing this.
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Definition 4.1. Group Action An action of a group G on a set X is a map
G × X → X given by (g, x) = gx where ex = x for all x where e is the
identity element of the group, and (g1g2)x = g1(g2x) for all x ∈ X and all
g1, g2 ∈ G

Let MR = R ∗ L−1,MU = U ∗D−1 and MF = F ∗B−1, and let H be the
group 〈MR,MU ,MF 〉.

Now let E be the set of edge cubelets, and C be the set of center facelets,
and let X = E ∪ C. Notice that X is a set, not a group. H, then, acts on
the set X. Observe that H does not alter any of the corner elements of the
cube set. You can confirm this with a cube of your own by observing that no
move in the slice group changes the relative positions of the corners to each
other. [3]

Now suppose that we call two edge cubelets equivalent if one can be sent
to the other via an element of H. Then H partitions X into three orbits, the
edges along the RL slice, UD slice, and FB slice, denoted ERL, EUD and
EFB, respectively.

Since H acts on the set ERL, we have a homomorphism rRL : H → SERL
,

where SERL
is the symmetric group on ERL, which takes each MA ∈ H to

MR. Similarly, we have rFB : H → SEFB
and rUD : H → SEUD

. H also acts
on each of the sets E and C, which gives us the homomorphisms

r = rRL × rFB × rUD : H → SERL
× SEFB

× SEUD
⊂ SE

and s : H → SC , which we can combine into a single homomorphism

r × s : H → SERL
× SEFB

× SEUD
× SC

Next consider that the image of H in SERL
is 〈MR〉, with similar results

for SEFB
, and SEUD

. Recalling how we proved that a single rotation of the
side of a cube is isomorphic to Z4, the cyclic group on 4 elements, it is simple
to show that each of these groups is isomorphic to Z4 as well.

Next we’ll take a look at the image of H in SC . Looking at the entire
cube from the perspective of just the center facelets, this becomes surprisingly
simple. Each movement, as far as the centers are concerned, is no different
from a rigid rotation of the entire cube. Thus, the image of H in SC is simply
the rotation group of a cube. This, conveniently provided to us by David
Joyner, is simply S4.

Combining all this information, we can see that the image of H in SERL
×

SEFB
× SEUD

× SC is isomorphic to a subgroup of

C3
4 × S4
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A considerably more detailed and interesting result than simply recogniz-
ing it as a subgroup of S48

5 The Illegal Rubik’s Cube Group

Next we’ll take a step up and out of the Rubik’s Cube group and take a look
at a group that contains it as a subgroup.

Before we can do that, however, we need to define two new terms. [3]

Definition 5.1. Semi-Direct Product
Suppose that H1 and H2 are both subgroups of a group G. We say that

G is the semi-direct product of H1 by H2, written H1 oH2 if

• G = H1 ×H2

• H1 and H2 only have the identity of G in common

• H1 is normal in G

Definition 5.2. Wreath Product
Let G1 be a group, and let G2 be a group acting on a finite set X, where

|X| = m, and let GX
1 denote the direct product of G1 with itself m times,

with the coordinates labeled by the elements of X. The wreath product of
two groups G1 and G1 is the group G1 wr G2 = GX

1 where the action of G2

on GX
1 is via its action on X.

Let H be the Illegal Rubik’s Cube Group, which is differentiated from
the Rubik’s Cube Group by the fact that it allows for “disassembling” and
“reassembling” the cubelets of the cube. By doing this, it is possible to
produce an larger group that contains the Rubik’s Cube group as a subgroup.

Now consider any given corner cubelet. Now that we are free from the
constraint of whether a given permutation is “legal”, we can describe all of
its possible positions more simply. Because we are not removing the stickers
from the cubelet, the relative positions of the three facelets do not change.
However, it can rotate freely. Since there are three facelets, this forms the
cyclic group on 3 elements, Z3. Because there are eight possible corners of
the cube a corner cubelet can occupy, the orientation of a single facelet of
a corner cubelet in the Illegal Rubik’s Cube group can be described by the
direct product of Z3 with itself eight times, Z8

4. Because there are eight corner
cubes that can be arranged over eight positions, the possible arrangements
can be described by the permutation group on eight elements, S8.
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The wreath product of these groups, Z8
3 wr S8, describes the position of

all corner facelets in the Illegal Cube group.
Similarly, we can determine that for an edge cubelet, there are 12 possible

locations on the cube that a given edge cubelet can occupy, and 2 orienta-
tions that it can have. Therefore, the group Z12

2 describes all the possible
orientations of a single edge cubelet.

Again, because there are 12 edge facelets and 12 possible positions they
can hold, their arrangements can be described by S12, and again, the wreath
product of these groups Z12

2 wr S12 describes the positions of all edge facelets
in the Illegal Cube group.

The direct product of these two groups, (Z8
3 wr S8)×(Z12

2 wr S12) describes
the entirety of the Illegal Rubik’s Cube group, a result that follows from the
previous group constructions.
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