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1 Abstract

In 1843, after many failed efforts to describe a 3-dimensional extension to the complex num-
bers, William Hamilton realized the solution lay in 4-dimensions, he carved the expression
i2 = j2 = k2 = ijk = −1 into the stone of a nearby bridge to commemorate the moment
and went on to devote his life to studying them. It was his colleague John T. Graves who
suggested going further, saying “There is still something in the system which gravels me. I
have not yet any clear views as to the extent to which we are at liberty arbitrarily to create
imaginaries, and to endow them with supernatural properties...If with your alchemy you
can make three pounds of gold, why should you stop there?” Graves was referring to the
Octonions, which he went on to study, but his sentiments hold true for the abstraction of
quaternion algebras as well. Hamilton was focused on the obviously practical quaternions. I
will start by looking at Hamilton’s quaternions before addressing the generalization to other
fields.
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2 The Real Quaternions

The real quaternions are of the form

H = {a + bi + cj + dk|a, b, c, d ∈ R}

Where multiplication follows the rules i2 = j2 = k2 = ijk = −1 and i,j, and k commute
with real numbers.

The quaternions form an algebra over the real numbers since they are both a vector
field over the reals and a ring under the multiplication rules set forth by Hamilton. Before
generalizing to other fields let us look at some properties of the Hamiltonian quaternions.

Definition: The conjugate of a quaternion q = a + bi + cj + dk is given by q = a− bi−
cj − dk.

It can easily be shown that q = q and q1 + q2 = q1+q2. It is also true that q1q2 = q2 q1, it is
important to note that the order of multiplication is reversed since quaternion multiplication
is not commutative.

Definition: The norm N(q) of a quaternion is given by N(q) = qq = qq = a2+b2+c2+d2.
Because elements commute with real numbers the norm preserves multiplication.

N(q1q2) = q1q2q1q2 = q1q2q2 q1 = q1N(q2)q1 = N(q2)q1q1 = N(q2)N(q1)

Every nonzero quaternion has an inverse given by q
N(q)

since N(q) > 0, which means
that the quaternions are a division ring. They cannot be a field like R and C because their
multiplication is not commutative.

3 Generalizing

Now we will begin to generalize. We will define a quaternion Algebra (a, b)F with nonzero
a, b ∈ F is an algebra over a field F with an i, j, and k such that i2 = a, j2 = b, and
ij = k = −ji, and where i,j, and k commute with elements of F . We will also assume that
char(F ) 6= 2.

Under this more general model Hamilton’s quaternions are given by (−1,−1)R, and we
can confirm this by taking

k2 = (ij)k = ijij = −iijj = i(−1)(−1) = −1

giving us the rest of the rules Hamilton devised.
We can also create the algebra (1, 1)R called the split-quaternions. In the split-quaternions

i2 = 1,j2 = 1, and k2 = ijij = −iijj = −(1)(1) = −1.
We can create other algebras, for example: (x, x + 1)GF (9) where i2 = x, j2 = x + 1, and

k2 = x + 2. Interestingly this algebra has zero divisors since (0 + i + j + k)2 = 0.
Other things that must be generalized include the norm and conjugation. Both of these

can be generalized to an arbitrary field fairly easily since they only rely on the existence of
additive inverses. Multiplicative inverses also exist for all elements with N(q) 6= 0 since they
are still defined as q

N(q)
.
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4 Isomorphism of Algebras

The question now is, how do we know when two quaternion algebras are actually different
from one another.

Definition: An isomorphism between quaternion algebras is a ring isomorphism f : A→
B such that f(c) = c for all c ∈ F .

Theorem: For all a 6= 0 in a field F , the quaternion algebra (a, 1)F ∼= M2(F ), which is
the algebra of 2× 2 matrices over F . We start by mapping

1→
[
1 0
0 1

]
, i→

[
0 1
a 0

]
, j →

[
1 0
0 −1

]
, k →

[
0 −1
a 0

]
Since char(F ) 6= 2 we know 1 6= −1 so these four matrices are linearly independent and

x1 + x2i + x3j + x4k →
[

(x1 + x3) (x2 − x4)
a(x2 + x4) (x1 − x3)

]
Since the four matrices we created are linearly independant and dimM2(F ) = 4 we know

this is a bijection. We can check easily that multiplication is preserved, confirming that its a
ring isomorphism. We know that our mapping takes the “scalar term” of the original algebra
to multiples of the identity matrix which satisfies the second requirement of our definition,
making this mapping an isomorphism. Through similar procedures we can also show that
(a, c2)F ∼= M2(F ) and (a,−a)F ∼= M2(F ).

We have a formal definition of an isomorphism between quaternion algebras. However,
there exists a more practical way to determine an isomorphism between two quaternion
algebras.

Definition: A quaternionic basis of (a, b)F is a set {1, e1, e2, e1e2} such that e21, e
2
2 ∈ F ,

e21, e
2
2 6= 0 and e1e2 = −e2e1.

Any quaternionic basis that can be constructed in a given quaternion algebra will reveal
an isomorphism to another algebra with that basis as its defining basis. It is easy to see that
{1, i, j, ij} is a basis, as well as {1, j, i, ji}, {a, i, ij,−j} and other simple rearrangements of
i, j, and k are also bases, meaning that (a, b)F ∼= (b, a)F ∼= (a,−ab)F , along with all other
obvious permutations of values when constructing an algebra.

Another form of quaternion algebra that is isomorphic to M2(F ) is any algebra where
b = x2 − ay2 for x, y ∈ F . We can construct a basis for (a, b)F of the form like {1, i, jx +
ky, (i)(jx + ky)}. This is a basis of (a, b)F , and

(jx + ky)2 = j2x2 + jkxy + kjxy + k2y2 = bx2 − aby2 = b(x2 − ay2) = b2

so (a, b)F ∼= (a, b2)F ∼= M2(F ).
It will be important later that nonzero elements of the form x2−ay2 actually form a group

under multiplication called the norm subgroup associated to a or Na. Because 1 = 12 − a02

they have the multiplicative identity and because

(x2 − ay2)(w2 − az2) = (xw + ayz)2 − a(xz + wy)2
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They have additive closure. Inverse elements are also in the group since

1

x2 − ay2
=

x2 − ay2

(x2 − ay2)2
=

x

x2 − ay2
2

− a
y

x2 − ay2
2

Theorem: If A = (a, b)R is a quaternion algebra over R, then either A ∼= (−1,−1)R
or A ∼= (1, 1)R. That is, either A is isomorphic to the Hamiltonian quaternions or A is
isomorphic to the split-quaternions.

Proof: Take (a, b)R to have a quaternionic basis {1, w, v, wv} where w2 = a, v2 = b
and (wv)2 = −ab. If a, b < 0 then in the Hamiltonion quaternions one can define a basis
{1,
√
−ai,

√
−bj,

√
abij} which is the same basis. This indicates that there is an isomorphism

with the Hamiltonian quaterions. In the case where a, b > 0, WLOG since we have shown
that rearranging a, b, and −ab is an isomorphism, using the basis of the split-quaternions one
can construct {1,

√
ai,
√
bj,
√
abij} which indicates the existence of an isomorphism between

A and the split-quaternions.

Theorem: There is only one quaternion algebra over C which is isomorphic to M2(C).

Proof: This is easy to show since for any b ∈ C there exists an element such that b = c2

and we know that (a, c2)F ∼= M2(F ).

Theorem: A quaternion algebra that is not a division ring is isomorphic to M2(F ).

Proof We already know that all quaternion algebras of the form (a, c2)F and by isomor-
phism those of the form (c2, b)F are isomorphic to M2(F ). So we can assume that neither a
nor b are squares. If we assume that we do not have a division ring then we must have some
nonzero element without a multiplicative inverse. We have already established that inverses
exist for all q where N(q) 6= 0 so there must exist some q such that

N(q) = x2
1 − ax2

2 − bx2
3 + abx2

4 = 0

where the xi’s are not all zero. Therefore x2
1 − ax2

2 = bx2
3 − abx2

4. Since a is not a square
x2
1 − ax2

2 6= 0, since if x2
3 − ax2

4 = 0 then either x4 = 0, meaning x3 = 0 or the equation can

be rearranged to form a =
x2
3

x2
4

showing that a is a square, which is a contradiction. If both

x2
3 = 0 and x2

4 = 0 then x2
1 − ax2

2 = 0 which is of a similar case. If both expressions are 0
then either all the xi’s are 0 or a is a square. Either is a contradiction so neither expression

can be zero, meaning that we can rearrange the entire expression into b =
x2
1−ax2

2

x2
3−ax2

4
, which

because we have shown that Na is a group, means that b ∈ Na therefore b = x2 − ay2 and
by an earlier theorem (a, b)F ∼= M2(F ).

Theorem: Over a field F , H(F ) = (−1,−1)F is a division ring if and only if −1 6= x2+y2

for x, y ∈ F .

Proof If −1 = x2 + y2 for x, y ∈ F then −1 = x2 − (−1)y2 so H(F ) ∼= M2(F ) and is
therefore not a division ring. If H(F ) is not a division ring then H(F ) ∼= M2(F ) by the
previous theorem. Therefore if either is not true then the other must also not be true.
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Figure 1: The Fano plane

So now we know that the structure of a quaternion algebra over a field F can either be
a division ring, or it can be isomorphic to M2(F ). Over R there are exactly two quaternion
algebras, over C there is only one. There are infinitely many non-isomorphic quaternion
algebras over Q, the proof of which involves primes congruent to 3 mod 4, and all but one
of them are division rings.

5 Octonion algebras

I mentioned at the beginning of this paper John Graves and his octonions. They too create
a general algebra over a field, but those algebras are severely less studied due to their lack of
the associative property, making them more difficult to approach, as well as reducing their
potential applications.

Definition: The octonions are numbers of the form

O = {a0 + a1e1 + a2e2 + a3e3 + a4e4 + a5e5 + a6e6 + a7e7|ai ∈ R}

Where e2 = −1 for all ei, the ei’s commute with real numbers, and the ei’s multiply with
one another following an extensive set of rules which can most succinctly be described by a
diagram called the Fano plane. For any three elements on a line ea, eb, and ec the expression
eaeb = ec = −ebea holds.

While the multiplication is not commutative or associative, it does obey all forms of the
Moufang identity, given by (z(x(zy))) = (((zx)z)y). They still have a conjugation

q = a0 − a1e1 − a2e2 − a3e3 − a4e4 − a5e5 − a6e6 − a7e7
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and a norm
N(q) = qq = qq = a20 + a21 + a22 + a23 + a24 + a25 + a26 + a27

Their norm does preserve multiplication, meaning they are still a composition algebra. And
their norm also gives rise to a multiplicative inverse of every octonion q equal to q

N(q)
.

An interesting thing to note about the octonions is that, unlike the quaternions, which
can be represented as a matrix algebra, the octonions cannot since matrix multiplication is
associative and octonion algebra is not. The octonions can be represented by a mathematical
object called a Zorn vector matrix, which is a 2× 2 matrix over R except two of the entries
in the matrix contain vectors of dimension 3. Addition is performed componentwise while
multiplication is given by[

a u
v b

] [
c w
x d

]
=

[
ac + u · x aw + du− v × x

cv + bx + u×w bd + v ·w

]
Where · and × are vector dot and cross products. Regardless of its actual utility it is

certainly an interesting construction.

Generalizing from the octonions to octonion algebras can be done, but unless N(ei) = 1
for all i it is not as simple as choosing a few values and allowing the rest to be defined by the
multiplication. The aformentioned octonions (−1,−1,−1)R and the split octonions (1, 1, 1)R
are examples of octonion algebras. Defining others and determining if they are isomorphic to
an existing octonion algebra is much more complicated than the same task for quaternions.
But it would likely make use of the following theorem

Theorem If e1, e2 are two distinct nonreal elements of an octonion algebra, then {1, e1, e2, e1e2}
is a quaternion subalgebra. This can easily be shown by the definition of the multiplication
on an octonion algebra.

While quaternions and quaternion algebras have lots of applications due to their connec-
tions to three-dimensional rotations, the octonions have significantly less. I found one paper
that said octonion algebras could be used to develop fully homomorphic encryption schemes.
However, reviews of the paper indicated that it had some serious problems.

Beyond octonion algebras there are no more composition algebras. Sedenion algebras
and beyond lack the alternative property, which means that their norm does not preserve
multiplication, which is a characteristic of composition algebras.

References

[1] Conway, John H., and Derek A. Smith. On Quaternions and Octonions. Taylor & Francis,
2003.

[2] Kuipers, Jack B., Quaternions and Rotation Sequences: A Primer with Applications to
Orbits, Aerospace, and Virtual Reality. Princeton University Press, 1999.

[3] Voight, John, The arithmetic of quaternion algebras. University of Vermont.

6



[4] Conrad, Keith, Quaternion Algebras.

[5] Baez, John, The Octonions.

[6] Wells, Andrew T., Zorn vector matrices over commutative rings and the loops arising
from their construction . Iowa State University, 2010.

[7] Wang, Yongge, Octonion Algebra and Noise-Free Fully Homomorphic Encryption (FHE)
Schemes UNC Charlotte.

7


