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1 Introduction

The classification of the finite groups of order 16 is more difficult than it first appears. The
legwork comes not from finding the groups, but from proving that there are no more.

This proof primarily follows the example of Marcel Wild’s proof via cyclic extensions
in [4], in which we limit the number of possible groups by examining the restrictions on
the possible extension types realized by these groups, then match groups to these extension
types to create a full list of the finite groups of order 16.

2 Definitions and Notation

This paper assumes a certain level of familiarity with Abstract Algebra, particularly as it
is introduced in Thomas Judson’s Abstract Algebra: Theory and Applications ([3]). Some
concepts are restated here with brief definitions and, if applicable, the notation used. See
[3] or any other introductory textbook on group theory for more information.

• A group G is abelian if xy = yx for all x, y ∈ G.

• If H is a subgroup of G, then H ⊆ G. If H is a proper subgroup of G, that is
H ⊆ G, H 6= G then H ⊂ G.

• Normal subgroups will play an important role in this paper, and the notation H C G
will be used to denote that H is a normal subgroup of G.

• A groupG generated by elements {x1, x2, . . . , xk} will be written asG = 〈x1, x2, . . . , xk〉,
and a group generated by a single element is a cyclic group.
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• The order of a group G, or more generally the size of a set G, is |G|, and for some x ∈ G,
|x| is understood to be the order of the cyclic group generated by x, or |x| = |〈x〉|.

• The centralizer of an element x ∈ G is C(x) = {g ∈ G | gx = xg}.

• The center of a group G is defined to be Z(G) ≡ {g ∈ G | gx = xg for all y ∈ G}. The
center is a normal subgroup, and it is abelian.

• An automorphism of a group G is an isomorphism φ : G→ G.

• An inner automorphism ta of G is ta : G→ G, ta(x) = axa−1.

• The automorphism group of G, Aut(G), is the group of all automorphisms of G.

• Two elements g1, g2 ∈ G are conjugate if there exists a ∈ G such that ta(g1) = g2. The
set of all elements that are conjugate to g is [g], the conjugacy class of g.

• If N is a normal subgroup of G and H is a subgroup of G such that NH = {nh | n ∈
N, h ∈ H} and N ∩H = {eG}, then G is the inner semidirect product of N and H, or
G = N oH.

• As with direct products, if G is the inne semidirect product of N and H, then G
is isomorphic to an outer semidirect product of N and H. To do construct an outer
semidirect product, you must specify an automorphism φ : H → Aut(N), φ(h) = φh
for h ∈ H, and φh(n) = hnh−1 for n ∈ N . Then G ∼= NoφH is the semidirect product
of N and H with respect to φ. The operation in this group is ∗ : (N×H)×(N×H)→
N oφ H, where (n1, h1) ∗ (n2, h2) = (n1φh1(n2), h1h2).

In addition to these two additional definitions are of critical importance to the classifi-
cation of all groups of order 16, neither of which appear in [3]. These concepts are used in
Marcel Wild’s classification of groups of order 16 [4].

2.1 Cyclic Extensions and Extension Types

Definition 2.1 (Cyclic Extension). Let N C G. If G/N ∼= Zn, then G is a cyclic extension
of N .

To motivate the next definition, we will examine some properties of cyclic extensions.
Suppose G is a cyclic extension of N such that G/N ∼= Zn. Consider a ∈ G such that
|Na| = n in G/N , then v = an ∈ N . Consider τ ∈ Aut(N) such that τ is the restriction to
N of the inner automorphism ta of G. Then

τ(v) = ava−1 = aana−1 = a1+n−1 = an = v.

Now further consider

τn(x) = aa · · · a(x)a−1 · · · a−1a−1 = anxa−n = vxv−1 = tv(x).

This is true for all x ∈ N , therefore τn = tv.
In order to move away from relying on an element a ∈ G to discuss these cyclic extensions,

we will define the extension type.
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Definition 2.2. For a group N , a quadruple (N, n, τ, v) is an extension type if v ∈ N ,
τ ∈ Aut(N), τ(v) = v, and τn = tv.

Not only does this definition eliminate the dependence on the element a ∈ G, it also
eliminates the requirement of the group G. However, one can always work the other direction
and from a groupG with a normal subgroupN write down an extension type whichG realizes.
That is, if G is a cyclic extension of N , then there exists v ∈ N and τ ∈ Aut(N) such that
(N, n, τ, v) is an extension type. A group G with normal subgroup N may realize more than
one extension type (which will differ in the last two entries of the quadruple). This leads us
to the first major theorem of this paper.

3 Preliminary Theorems and Calculations

The following are a series of theorems that will aid in the classification of all groups of
order 16. We will first explore the properties of extension types, then the implications of
those properties for groups which realize extension types, and then finally move into concrete
calculations of the properties of groups of order 16.

Theorem 3.1. Two extension types, (N, n, τ, v) and (N ′, n, σ, w) are equivalent if there
exists an isomorphism ϕ : N → N ′ such that σ = ϕτϕ−1 and w = ϕ(v).

Proof. Reflexivity is obvious if you consider ϕ = id.
Similarly, this equivalence relation is clearly symmetric since ϕ is an isomorphism, so if

(N, n, τ, v) ∼ (N ′, n, σ, w) by ϕ, then (N ′, n, σ, w) ∼ (N, n, τ, v) by ϕ−1.
Finally, if (N, n, τ, v) ∼ (N ′, n, σ, w) by ϕ1 and (N ′, n, σ, w) ∼ (N ′′, n, ρ, u) by ϕ2, then

ϕ2ϕ1 : N → N ′′ and

(ϕ2ϕ1)τ(ϕ2ϕ1)
−1 = (ϕ2ϕ1)τ(ϕ−11 ϕ−12 )

= ϕ2(ϕ1τϕ
−1
1 )ϕ−12

= ϕ2σϕ
−1
2

= ρ.

Finally, (ϕ2ϕ1)(v) = ϕ2(ϕ1(v)) = ϕ2(w) = u. So (N, n, τ, v) ∼ (N ′′, n, ρ, u).

Now that we understand how to discuss equivalent extension types, we need to know
the implications for groups that realize equivalent extension types. The following theorem
should not be too surprising.

Theorem 3.2. G realizes (N, n, τ, v) andH realizes (M,n, σ, w). If (N, n, τ, v) ∼ (M,n, σ, w),
then G ∼= H.

Proof. (N, n, τ, v) ∼ (M,n, σ, w). Therefore there exists ϕ : N → M such that σ = ϕτϕ−1

and w = ϕ(v). Furthermore, from Definition 2.1, G realizes (N, n, τ, v) so there exists
a ∈ G/N such that an = v. Similarly, there exists b ∈ H/M such that bn = w. Define
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Φ : G→ H, such that for x, y ∈ G,

Φ
(
(xai)(yaj)

)
= Φ

(
x(aiya−i)ai+j

)
= Φ

(
xτ i(y)vai+j−n

)
= ϕ

(
xτ i(y)v)bi+j−n

)
= ϕ(x)ϕ

(
τ i(y)

)
φ(v)bi+j−n

= ϕ(x)σi (ϕ(y))wbi+j−n = ϕ(x)
(
biφ(y)b−i

)
bi+j

= ϕ(x)biϕ(y)bj = Φ(xai)Φ(yaj).

Now that we understand extension types, let us examine groups of order 16. A group
G that realizes a normal extension (N, n, τ, v) must contain N as a normal subgroup, so we
will examine some possible normal subgroups of groups of order 16 in order to push this
discussion towards the final theorem classifying all groups of order 16. We will find that the
group Z4

2 is an outlier in this discussion, so it will be considered separate from the other
groups of order 16. Furthermore, the group Z4×Z2 will appear frequently, so for notational
brevity we will define K8 ≡ Z4 × Z2.

Theorem 3.3. If |G| = 16 and G � Z4
2, then either Z8 C G or K8 C G.

Proof. Since [G : Z8] = [G : K8] = 2, it will be sufficient to show that either K8 ⊂ G or
Z8 ⊂ G, since index 2 will guarantee normality. Orders of non-identity elements must be
greater than 1 and divide 16, so they can only be 2, 4, 8, or 16.

Case 1. |x| ≤ 2 for all x ∈ G, so G ∼= Z4
2, but we assumed G � Z4

2 so we have a
contradiction.

Case 2. There exists x ∈ G such that |x| = 8 Therefore 〈x〉 ∼= Z8 ⊂ G.
Case 3. There exists x ∈ G such that |x| = 16, so |x2| = 8 and we are back in Case 2.
We now know some more about G. Namely, G contains at least one element of order

4, since if G contains an element g such that |g| = 8 then |g2| = |〈g2〉| = 4. Furthermore,
since |G| = 24, |Z(G)| = 2k for some k ∈ {1, 2, 3, 4}. By Cauchy’s Theorem, there exists
z ∈ Z(G), |z| = 2 and 〈z〉 = {e, z} ∼= Z2.

Case 4. There exists x ∈ G such that |x| = 4 and x2 6= z. Then 〈x〉 ∼= Z4 and
〈x〉 ∩ 〈z〉 = {e}, so the direct product of 〈x〉 and 〈z〉 is 〈x, z〉 ∼= Z4 × Z2 = K8 ⊂ G.

Case 5. x2 = z for all x ∈ G with |x| = 4. G/〈z〉 is abelian since |h| ≤ 2 for all
h ∈ G/〈z〉. Since |x| = 4, all conjugates of x are in the right coset 〈z〉x. |〈z〉| = 2
and therefore |C(x)| ≥ 8 where C(x) is the centralizer of x. Therefore, there must exist
y ∈ C(x), y /∈ 〈x〉.

1. |y| = 2 implies 〈x, y〉 = K8

2. |y| = 4 implies y2 = z. So (xy)2 = x2y2 = zz = e and therefore |xy| ≤ 2. If |xy| = 1
then xy = e and y = x−1 ∈ 〈x〉, but y /∈ 〈x〉 so |xy| = 2 and xy /∈ 〈x〉 since then
xy = x2, or y = x which is another contradiction.
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So now we know that every group of order 16 (except the outlier Z4
2) contains either K8

or Z8 as a normal subgroup. Let us then consider all possible cyclic extensions of K8 and Z8.
These two groups are small enough that we can reason through the possible automorphisms
fairly easily. We will begin with Z8.

If we let Z8 = 〈α〉, then the automorphisms can easily be described by what they do to
α. Namely, they raise α to odd powers, since a homomorphism that raised α to an even
power would not have all of Z8 as a codomain. In fact, the codomain would be isomorphic
to Z4. So we can list the automorphisms of Z8 simply as

Automorphism φi ∈ Aut(Z8) φi(α)
φ1 α
φ2 α3

φ3 α5

φ4 α7

The automorphisms of K8 are a little more involved, but follow similar principles. If we
recall that K8 = Z4 × Z2 and let Z4 = 〈β〉 and Z2 = 〈γ〉 and the group K8 = 〈β, γ〉 =
{e, β, β2, β3, γ, βγ, β2γ, β3γ}, then we can just consider the effect of any particular automor-
phism on the generators β and γ. |γ| = 2, so γ can only be taken to elements of order 2.
Only two of these exist in K8, namely γ and β2γ. Similarly, |β| = 4 so β can only be taken to
other order 4 elements, β, β3, βγ, and β3γ. So there are 4× 2 = 8 possible automorphisms.

Automorphism ψi ∈ Aut(K8) ψi(β) ψi(γ)
ψ1 β γ
ψ2 β3γ β2γ
ψ3 β3 γ
ψ4 βγ β2γ
ψ5 βγ γ
ψ6 β3 β2γ
ψ7 β3γ γ
ψ8 β β2γ

Finally, recall that in Definition 2.1 we obtained the element n by noting that G/N ∼= Zn
which implies that n = |G/N |. For our groups of order 16 with N = K8 or Z8, n will always
be 2.

We can now begin to hone in on the possible groups of order 16. We have already
established that every group of order 16 is either Z4

2 or contains a normal subgroup Z8 or
K8, as well as every possible automorphism of Z8 (4 total) and K8 (8 total). Since we are
guaranteed that at most every possible extension type will be realized by a group, we have
now an upper bound on the number of groups of order 16. In principle, for a group N and
n = 2, there are |Aut(N)| · |N | possible extensions. This puts our maximum number of
groups of order 16 at 1 + 4 · 8 + 8 · 8 = 97. Not a particularly low number, but this upper
bound does not even account for the requirement τ(v) = v. Furthermore, we can lower this
bound considerably by examining which extension types can be realized at all and if there
are any equivalent extension types in the list.
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4 Restrictions on Possible Extension Types

Now that we have the normal subgroups and automorphisms of our extension types calcu-
lated, and the restriction n = 2, we can begin to narrow to list by considering which of our
extension types are realizable, and which of those are equivalent. We will attempt to prove
the following, our main theorem.

Theorem 4.1. Every group G of order 16 that is not isomorphic to Z4
2 realizes one of the

following extension types, where Z8 = 〈α〉 and K8 = 〈β, γ〉:

(Z8, 2, φ1, e), (Z8, 2, φ2, e) (Z8, 2, φ3, e), (Z8, 2, φ4, e),
(Z8, 2, φ4, α

4), (Z8, 2, φ1, α), (K8, 2, ψ1, e), (K8, 2, ψ3, e),
(K8, 2, ψ5, e), (K8, 2, ψ6, e), (K8, 2, ψ3, β

2), (K8, 2, ψ5, β
2),

(K8, 2, ψ1, γ).

Proof. This proof is split into several cases, but we will group them by the normal subgroup
in question. In all cases, however, we will appeal to Definition 2.1 to frame the cases in terms
of the order of the inducing element g ∈ G. Note that, since n = 2 for all cyclic extensions,
we can write v = g2, then consider which automorphisms fix v. Any (N, 2, τ, v) for which
τ(v) 6= v will not be realizable.

First we will consider extension types with N = Z8.
Case 1. |g| = 2. Then |v| = |g2| = 1, so v = e. Since τ(e) = e for all τ ∈ Aut(Z8), all

(Z8, 2, φi, e) are realizable. Furthermore, for all future cases, we can assume that |x| ≥ 4 for
all x ∈ G/〈z〉, since otherwise we could return to this case.

Case 2. |g| = 4. Then |v| = |g2| = 2, so v = α4.

1. τ = φ1. Consider (α2g)2.

(α2g)(α2g) = α2(gα2g−1)g2

= α2φ1(α
2)g2 = α4g2

= v2 = e,

so |α2g| = 2, and we are back in case 1.

2. τ = φ2. Consider (αg)2.

(αg)(αg) = α(gαg−1)g2

= αφ2(α)g2 = αα3g2

= α4g2 = v2 = e,

so |αg| = 2, case 1.

3. τ = φ3. Consider (α2g)2.

(α2g)(α2g) = α2(gα2g−1)g2

= α2φ3(α
2)g2 = α12g2

= v4 = e,

so |α2g| = 2, case 1.
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So at most (Z8, 2, φ4, α
4) is allowed, and we will see soon that it is a realized extension

type.
Case 3. |g| = 8. Then |v| = 4, so v = α2 or v = α6. For τ = φ2, φ2(α

2) = α6 6= α2

and φ2(α
6) = α18 = (α8)2α2 = α2 6= α6. Similarly, φ4(α

2) = α6 and φ4(α
6) = α2, so only

τ ∈ {φ1, φ3} are allowed.
However, for τ = φ1, |α3g| = 2 and for τ = φ3, |αg| = 2, so no (Z8, 2, φi, α

2) or
(Z8, 2, φi, α

6) are allowed.
Case 4. |g| = 16. Then G ∼= Z16 and G realizes (Z8, 2, φ1, α). Any other extension types

must either fall into case 1 or be equivalent to this extension type.
We will now consider extension types of K8. Note that we can now assume that |x| < 8

for all x ∈ G since otherwise Z8 ⊂ G and one of the extension types in the previous cases
will be realized by G. So we only have two orders to consider, |g| = 2 and |g| = 4. Note
that for τ 2 = id the automorphisms ψ5 and ψ7 are automorphic, as well as ψ6 and ψ8.
Additionally neither ψ2

2 = id nor ψ2
4 = id, so no extension types of ψ2 or ψ4 can be realized

for n = 2. So instead of considering all 8 automorphisms of K8, we need only consider 4, say
{ψ1, ψ3, ψ5, ψ6}.

Case 5. |g| = 2. Then v = e. e is fixed by all automorphisms, so all (K8, 2, ψi, e),
i ∈ {1, 3, 5, 6} are allowed.

Case 6. |g| = 4. Then |v| = 2. So v ∈ {β2, γ, β2γ}.

1. v = β2. For τ = ψ1, |βg| = 2, case 1.

For τ = ψ6, |βγg| = 2, case 1. This holds true for all ψn with n even, but we already
eliminated ψ2, ψ4, and ψ8 from the list.

So we are left with (K8, 2, ψ3, β
2) and (K8, 2, ψ5, β

2).

2. v = γ. τ(v) = v implies that we cannot have ψ6 since ψ6(γ) = e 6= γ.

For τ = ψ7, |βg| = 2, and we are back to case 1.

τ = ψ5 results in (βg)2 = β2 which can be reduced to the previous subcase if we
substitute ḡ = βg as our inducing element. Similarly, ψ3 reduces to the previous
subcase. So we are left with (K8, 2, ψ1, y).

3. v = β2γ. Again we cannot have ψn with even n. v is automorphic to y via ψ8. That
is, ψ8(v) = ψ8(x

2y) = x2(x2y) = x4y = y. So we will end up with the same groups as
in the previous subcase.
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5 The Groups of Order 16

Finally, here are the 13 groups which realize each of the extension types in Theorem 4.1,
plus the outlier Z4

2. Having just one group for each extension type is sufficient in light of
Theorem 3.2.

Group Label Construction Extension Type

G0 Z4
2 N/A

G1 Z8 × Z2 (Z8, 2, φ1, e)

G2 SD16 = Z8 oφ2 Z2 (Z8, 2, φ2, e)

G3 Z8 oφ3 Z2 (Z8, 2, φ3, e)

G4 D16 = Z8 oφ4 Z2 (Z8, 2, φ4, e)

G5 Q16 (Z8, 2, φ4, α
4)

G6 Z16 (Z8, 2, φ1, α)

G7 Z4 × Z2
2 (K8, 2, ψ1, e)

G8 D8 × Z2 (K8, 2, ψ3, e)

G9 Z4 o Z2
2 (K8, 2, ψ5, e)

G10 Q8 o Z2 (K8, 2, ψ6, e)

G11 Q8 × Z2 (K8, 2, ψ3, β
2)

G12 Z4 o Z4 (K8, 2, ψ5, β
2)

G13 Z4 × Z4 (K8, 2, ψ1, γ)
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