1. Compute the determinant of the matrix below “by hand” (i.e. without using Sage to justify any part of your answer). (10 points)

\[A = \begin{bmatrix}
2 & 2 & -6 \\
4 & 7 & -8 \\
2 & 3 & -5 \\
\end{bmatrix} \]

2. Determine if the matrices below are diagonalizable or not. Your answer must contain justification based on theorems from this part of the course (or earlier). You may use Sage to provide most any computation you need. (So, for example, an answer that simply cites Sage output from `is_diagonalizable()` would get zero credit, while you should feel free to compute characteristic polynomials, eigenvalues, and eigenspaces so long as you describe the output carefully and interpret it properly in the context of theorems.) (20 points)

(a) \[B = \begin{bmatrix}
32 & -40 & 55 & -75 \\
50 & -78 & 25 & -125 \\
-10 & 15 & -8 & 25 \\
-20 & 35 & 5 & 52 \\
\end{bmatrix} \]

(b) \[C = \begin{bmatrix}
-27 & 71 & -9 & 99 & -29 \\
-31 & 39 & -3 & 33 & 65 \\
-31 & 31 & -4 & 12 & 89 \\
11 & -1 & -1 & 13 & -53 \\
-2 & 13 & -2 & 22 & -20 \\
\end{bmatrix} \]
3. Consider the 6×6 matrix E below. (30 points)

$$E = \begin{bmatrix}
-16 & -36 & -1 & 33 & 9 & -60 \\
7 & 14 & -1 & -16 & -6 & 24 \\
-9 & 0 & 8 & 36 & 27 & -36 \\
6 & 0 & -7 & -25 & -18 & 21 \\
-8 & -12 & 4 & 22 & 11 & -25 \\
3 & 0 & -2 & -12 & -9 & 14
\end{bmatrix}$$

(a) Use Sage to produce a factored version of the characteristic polynomial. From this information alone, list the eigenvalues of E and their algebraic multiplicities, explaining clearly how they are being derived from the output you have listed from Sage.

(b) Choose one of the positive eigenvalues of E and compute a basis for the eigenspace of the eigenvalue. Limit your justifications from Sage to the .rref() method.

(c) Compute the geometric multiplicity of each eigenvalue of E. Limit your justifications from Sage to the .rref() method.
4. Suppose that A is a matrix, λ is an eigenvalue of A, and $\alpha \in \mathbb{C}$ is a scalar. Prove that $\lambda + \alpha$ is an eigenvalue of $A + \alpha I_n$. (15 points)

5. Suppose that A and B are similar matrices, and $\alpha \in \mathbb{C}$ is a scalar. Prove that $A + \alpha I_n$ and $B + \alpha I_n$ are similar matrices. (15 points)

6. Suppose that A is a square matrix with characteristic polynomial $p_A(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$. Prove that $\det(A) = a_0$. (10 points)