Overview

1 Basics
 - Multilinearity
 - Dual Space

2 Tensors
 - Tensor Product
 - Basis of $\mathcal{T}_q^p(V)$

3 Component Representation
 - Kronecker Product
 - Components
 - Comparison
Multilinear Functions

Definition
A function $f : V \mapsto W$, where V and W are vector spaces over a field F, is linear if for all x, y in V and all α, β in F

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y).$$
Multilinear Functions

Definition
A function \(f : V \mapsto W \), where \(V \) and \(W \) are vector spaces over a field \(F \), is linear if for all \(x, y \) in \(V \) and all \(\alpha, \beta \) in \(F \)

\[
f(\alpha x + \beta y) = \alpha f(x) + \beta f(y).
\]

Definition
A function \(f : V \times U \mapsto W \), where \(V \), \(U \), and \(W \) are vector spaces over a field \(F \), is bilinear if for all \(x, y \) in \(V \) and all \(\alpha, \beta \) in \(F \)

\[
f(\alpha x_1 + \beta x_2, y) = \alpha f(x_1, y) + \beta f(x_2, y), \quad \text{and} \quad
f(x, \alpha y_1 + \beta y_2) = \alpha f(x, y_1) + \beta f(x, y_2).
\]
Multilinear Functions

Definition
A function \(f : V \mapsto W \), where \(V \) and \(W \) are vector spaces over a field \(F \), is linear if for all \(x, y \) in \(V \) and all \(\alpha, \beta \) in \(F \)

\[
f(\alpha x + \beta y) = \alpha f(x) + \beta f(y).
\]

Definition
A function \(f : V \times U \mapsto W \), where \(V \), \(U \), and \(W \) are vector spaces over a field \(F \), is bilinear if for all \(x, y \) in \(V \) and all \(\alpha, \beta \) in \(F \)

\[
f(\alpha x_1 + \beta x_2, y) = \alpha f(x_1, y) + \beta f(x_2, y), \text{ and } \\
f(x, \alpha y_1 + \beta y_2) = \alpha f(x, y_1) + \beta f(x, y_2).
\]
Multilinear Functions

Definition
A function \(f : V \mapsto W \), where \(V \) and \(W \) are vector spaces over a field \(F \), is linear if for all \(x, y \) in \(V \) and all \(\alpha, \beta \) in \(F \)

\[
f(\alpha x + \beta y) = \alpha f(x) + \beta f(y).
\]

Definition
A function \(f : V \times U \mapsto W \), where \(V \), \(U \), and \(W \) are vector spaces over a field \(F \), is bilinear if for all \(x, y \) in \(V \) and all \(\alpha, \beta \) in \(F \)

\[
f(\alpha x_1 + \beta x_2, y) = \alpha f(x_1, y) + \beta f(x_2, y), \quad \text{and} \quad
f(x, \alpha y_1 + \beta y_2) = \alpha f(x, y_1) + \beta f(x, y_2).
\]
Multilinear Functions

Definition

A function $f : V \mapsto W$, where V and W are vector spaces over a field F, is linear if for all x, y in V and all α, β in F

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y).$$

Definition

A function $f : V \times U \mapsto W$, where V, U, and W are vector spaces over a field F, is bilinear if for all x, y in V and all α, β in F

$$f(\alpha x_1 + \beta x_2, y) = \alpha f(x_1, y) + \beta f(x_2, y), \text{ and}$$

$$f(x, \alpha y_1 + \beta y_2) = \alpha f(x, y_1) + \beta f(x, y_2).$$
Multilinear Functions

Definition
A function $f : V \mapsto W$, where V and W are vector spaces over a field F, is linear if for all x, y in V and all α, β in F

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y).$$

Definition
A function $f : V \times U \mapsto W$, where V, U, and W are vector spaces over a field F, is bilinear if for all x, y in V and all α, β in F

$$f(\alpha x_1 + \beta x_2, y) = \alpha f(x_1, y) + \beta f(x_2, y), \quad \text{and}$$
$$f(x, \alpha y_1 + \beta y_2) = \alpha f(x, y_1) + \beta f(x, y_2).$$
Multilinear Functions

Definition

A function $f : V_1 \times \cdots \times V_s \mapsto W$, where \(\{ V_i \}_{i=1}^s \) and \(W \) are vector spaces over a field \(F \), is \(s \)-linear if for all \(x_i, y_i \) in \(V_i \) and all \(\alpha, \beta \) in \(F \)

\[
f(v_1, \ldots, \alpha x_i + \beta y_i, \ldots, v_s) = \\
\alpha f(v_1, \ldots, x_i, \ldots, v_s) + \beta f(v_1, \ldots, y_i, \ldots, v_s),
\]

for all indices \(i \) in \(\{1, \ldots, s\} \).
Multilinear Functions

Definition

A function $f : V_1 \times \cdots \times V_s \mapsto W$, where $\{V_i\}_{i=1}^s$ and W are vector spaces over a field F, is s-linear if for all x_i, y_i in V_i and all α, β in F

$$f(v_1, \ldots, \alpha x_i + \beta y_i, \ldots, v_s) = \alpha f(v_1, \ldots, x_i, \ldots, v_s) + \beta f(v_1, \ldots, y_i, \ldots, v_s),$$

for all indices i in $\{1, \ldots, s\}$.
Multilinear Functions

Definition

A function $f : V_1 \times \cdots \times V_s \mapsto W$, where $\{V_i\}_{i=1}^s$ and W are vector spaces over a field F, is s-linear if for all x_i, y_i in V_i and all α, β in F

\[
f(v_1, \ldots, \alpha x_i + \beta y_i, \ldots, v_s) = \\
\alpha f(v_1, \ldots, x_i, \ldots, v_s) + \beta f(v_1, \ldots, y_i, \ldots, v_s),
\]

for all indices i in $\{1, \ldots, s\}$.

Multilinear Functions

How do we test if a function f is linear?
Multilinear Functions

- How do we test if a function f is linear?
- Fix all inputs of f except the i^{th} input, if f is linear as a function of this input, then f is multilinear.
Multilinear Functions

- How do we test if a function f is linear?
- Fix all inputs of f except the i^{th} input, if f is linear as a function of this input, then f is multilinear.
- In other words, define $\hat{f}_i(x) = f(v_1, \ldots, v_{i-1}, x, v_{i+1} \ldots, v_s)$, then f is s-linear iff \hat{f}_i is linear for all i in $\{1, \ldots, s\}$.

Example

We already know of a bilinear function from $V \times V \rightarrow \mathbb{R}$. Any inner product defined on V is such a function, as $\langle \alpha v_1 + \beta v_2, u \rangle = \alpha \langle v_1, u \rangle + \beta \langle v_2, u \rangle$, and $\langle v, \alpha u_1 + \beta u_2 \rangle = \alpha \langle v, u_1 \rangle + \beta \langle v, u_2 \rangle$.
Multilinear Functions

- How do we test if a function f is linear?
- Fix all inputs of f except the i^{th} input, if f is linear as a function of this input, then f is multilinear.
- In other words, define $\hat{f}_i(x) = f(v_1, \ldots, v_{i-1}, x, v_{i+1} \ldots, v_s)$, then f is s-linear iff \hat{f}_i is linear for all i in $\{1, \ldots, s\}$.

Example

We already know of a bilinear function from $V \times V \mapsto \mathbb{R}$.
Multilinear Functions

- How do we test if a function f is linear?
- Fix all inputs of f except the i^{th} input, if f is linear as a function of this input, then f is multilinear.
- In other words, define $\hat{f}_i(x) = f(v_1, \ldots, v_{i-1}, x, v_{i+1} \ldots, v_s)$, then f is s-linear iff \hat{f}_i is linear for all i in $\{1, \ldots, s\}$.

Example

We already know of a bilinear function from $V \times V \rightarrow \mathbb{R}$. Any inner product defined on V is such a function, as

$$\langle \alpha v_1 + \beta v_2, u \rangle = \alpha \langle v_1, u \rangle + \beta \langle v_2, u \rangle,$$

and

$$\langle v, \alpha u_1 + \beta u_2 \rangle = \alpha \langle v, u_1 \rangle + \beta \langle v, u_2 \rangle.$$
Multilinear Functions

- How do we test if a function f is linear?
- Fix all inputs of f except the i^{th} input, if f is linear as a function of this input, then f is multilinear.
- In other words, define $\hat{f}_i(x) = f(v_1, \ldots, v_{i-1}, x, v_{i+1}, \ldots, v_s)$, then f is s-linear iff \hat{f}_i is linear for all i in $\{1, \ldots, s\}$.

Example
We already know of a bilinear function from $V \times V \mapsto \mathbb{R}$. Any inner product defined on V is such a function, as

\[
\langle \alpha v_1 + \beta v_2, u \rangle = \alpha \langle v_1, u \rangle + \beta \langle v_2, u \rangle, \quad \text{and} \\
\langle v, \alpha u_1 + \beta u_2 \rangle = \alpha \langle v, u_1 \rangle + \beta \langle v, u_2 \rangle
\]
Multilinear Functions

- How do we test if a function f is linear?
- Fix all inputs of f except the i^{th} input, if f is linear as a function of this input, then f is multilinear.
- In other words, define $\hat{f}_i(x) = f(v_1, \ldots, v_{i-1}, x, v_{i+1}, \ldots, v_s)$, then f is s-linear iff \hat{f}_i is linear for all i in $\{1, \ldots, s\}$.

Example

We already know of a bilinear function from $V \times V \mapsto \mathbb{R}$. Any inner product defined on V is such a function, as

$\langle \alpha v_1 + \beta v_2, u \rangle = \alpha \langle v_1, u \rangle + \beta \langle v_2, u \rangle$, and

$\langle v, \alpha u_1 + \beta u_2 \rangle = \alpha \langle v, u_1 \rangle + \beta \langle v, u_2 \rangle$
Multilinear Functions

- How do we test if a function f is linear?
- Fix all inputs of f except the i^{th} input, if f is linear as a function of this input, then f is multilinear.
- In other words, define $\hat{f}_i(x) = f(v_1, \ldots, v_{i-1}, x, v_{i+1}, \ldots, v_s)$, then f is s-linear iff \hat{f}_i is linear for all i in $\{1, \ldots, s\}$.

Example

We already know of a bilinear function from $V \times V \mapsto \mathbb{R}$. Any inner product defined on V is such a function, as

$$\langle \alpha v_1 + \beta v_2, u \rangle = \alpha \langle v_1, u \rangle + \beta \langle v_2, u \rangle,$$

and

$$\langle v, \alpha u_1 + \beta u_2 \rangle = \alpha \langle v, u_1 \rangle + \beta \langle v, u_2 \rangle.$$
Multilinear Functions

- How do we test if a function f is linear?
- Fix all inputs of f except the i^{th} input, if f is linear as a function of this input, then f is multilinear.
- In other words, define $\hat{f}_i(x) = f(v_1, \ldots, v_{i-1}, x, v_{i+1} \ldots, v_s)$, then f is s-linear iff \hat{f}_i is linear for all i in $\{1, \ldots, s\}$.

Example

We already know of a bilinear function from $V \times V \mapsto \mathbb{R}$. Any inner product defined on V is such a function, as

$$\langle \alpha v_1 + \beta v_2, u \rangle = \alpha \langle v_1, u \rangle + \beta \langle v_2, u \rangle,$$
and

$$\langle v, \alpha u_1 + \beta u_2 \rangle = \alpha \langle v, u_1 \rangle + \beta \langle v, u_2 \rangle$$
More Examples

Example

When treated as a function of the columns (or rows) of an $n \times n$ matrix, the determinant is n-linear.
More Examples

Example

When treated as a function of the columns (or rows) of an $n \times n$ matrix, the determinant is n-linear.

Example

For any collection of vector spaces $\{V_i\}_{i=1}^s$, and any collection of linear functions $f_i : V_i \rightarrow \mathbb{R}$, the function

$$f(v_1, \ldots, v_s) = \prod_{i=1}^{s} (f_i(v_i))$$

is s-linear.
Fix a vector space V over \mathbb{R}, where $\dim(V) = N$.

Definition $L(V; \mathbb{R})$ is the dual space of V, and is denoted V^\ast.

Dual Space
Dual Space

- Fix a vector space V over \mathbb{R}, where $\dim(V) = N$.
- Consider the set of all linear functions $f : V \mapsto \mathbb{R}$, denoted $\mathcal{L}(V : \mathbb{R})$.

Definition $\mathcal{L}(V : \mathbb{R})$ is the dual space of V, and is denoted V^*.

Dual Space

- Fix a vector space V over \mathbb{R}, where $\dim(V) = N$.
- Consider the set of all linear functions $f : V \rightarrow \mathbb{R}$, denoted $\mathcal{L}(V : \mathbb{R})$.
- What does this set look like?
Fix a vector space V over \mathbb{R}, where $\dim(V) = N$.

Consider the set of all linear functions $f : V \rightarrow \mathbb{R}$, denoted $\mathcal{L}(V : \mathbb{R})$.

What does this set look like?

\mathbb{R} is a vector space of dimension 1, so $\mathcal{L}(V : \mathbb{R})$ is the set of all linear transformations from an N-dimensional vector space to a 1-dimensional vector space.
Dual Space

- Fix a vector space \(V \) over \(\mathbb{R} \), where \(\dim(V) = N \).
- Consider the set of all linear functions \(f : V \rightarrow \mathbb{R} \), denoted \(\mathcal{L}(V : \mathbb{R}) \).
- What does this set look like?
- \(\mathbb{R} \) is a vector space of dimension 1, so \(\mathcal{L}(V : \mathbb{R}) \) is the set of all linear transformations from an \(N \)-dimensional vector space to a 1-dimensional vector space.
- We can thus represent every element of \(\mathcal{L}(V : \mathbb{R}) \) as a \(1 \times N \) matrix, otherwise known as a row vector.
Dual Space

- Fix a vector space V over \mathbb{R}, where $\dim(V) = N$.
- Consider the set of all linear functions $f : V \rightarrow \mathbb{R}$, denoted $\mathcal{L}(V : \mathbb{R})$.
- What does this set look like?
- \mathbb{R} is a vector space of dimension 1, so $\mathcal{L}(V : \mathbb{R})$ is the set of all linear transformations from an N-dimensional vector space to a 1-dimensional vector space.
- We can thus represent every element of $\mathcal{L}(V : \mathbb{R})$ as a $1 \times N$ matrix, otherwise known as a row vector.

Definition

$\mathcal{L}(V : \mathbb{R})$ is the **dual space** of V, and is denoted V^*.
Dual Space

- $V^* \cong V$, as they are both vector spaces of dimension N.

- Notation: $\langle v^*, v \rangle$ denotes the value of v^* evaluated at v. For our purposes, consider it the inner product of v and v^*.
Dual Space

- $V^* \cong V$, as they are both vector spaces of dimension N.
- v^* denotes an arbitrary element of V^*, rather than the conjugate transpose of $v \in V$.
Dual Space

- $V^* \cong V$, as they are both vector spaces of dimension N.
- v^* denotes an arbitrary element of V^*, rather than the conjugate transpose of $v \in V$.
- We keep this distinction in order to preserve generality.
Dual Space

- $V^* \cong V$, as they are both vector spaces of dimension N.
- v^* denotes an arbitrary element of V^*, rather than the conjugate transpose of $v \in V$.
- We keep this distinction in order to preserve generality.
- Elements of V are vectors while elements of V^* are covectors.
Dual Space

- $V^* \cong V$, as they are both vector spaces of dimension N.
- v^* denotes an arbitrary element of V^*, rather than the conjugate transpose of $v \in V$.
- We keep this distinction in order to preserve generality.
- Elements of V are vectors while elements of V^* are covectors.
- $(V^*)^*$ is identical to V.

Notation: $\langle v^*, v \rangle$ denotes the value of v^* evaluated at v. For our purposes, consider it the inner product of v and $(v^*)^T$.

Davis Shurbert (UPS)
V* \cong V, as they are both vector spaces of dimension \(N \).

\(v^* \) denotes an arbitrary element of \(V^* \), rather than the conjugate transpose of \(v \in V \).

We keep this distinction in order to preserve generality.

Elements of \(V \) are vectors while elements of \(V^* \) are covectors.

\((V^*)^*\) is identical to \(V \).

Notation: \(\langle v^*, v \rangle \) denotes the value of \(v^* \) evaluated at \(v \). For our purposes, consider it the inner product of \(v \) and \((v^*)^T\).
Tensors

Definition

A tensor of order \((p, q)\) is a \((p + q)\)-linear map

\[
T : V^* \times \cdots \times V^* \times V \times \cdots \times V \mapsto \mathbb{R}.
\]

We denote the set of all order \((p, q)\) tensors on \(V\) as \(\mathcal{T}_{q}^{p}(V)\).
Tensors

Definition

A tensor of order \((p, q)\) is a \((p + q)\)-linear map

\[
T : V^* \times \cdots \times V^* \times V \times \cdots \times V \rightarrow \mathbb{R}.
\]

We denote the set of all order \((p, q)\) tensors on \(V\) as \(T^p_q(V)\).

- \(T^p_q(V)\) forms a vector space under natural operations, as the cartesian product of \(n\) vector spaces over \(F\) forms a vector space over \(F \times \cdots \times F\).
Tensors

Definition

A tensor of order \((p, q)\) is a \((p + q)\)-linear map

\[
T : V^* \times \cdots \times V^* \times V \times \cdots \times V \mapsto \mathbb{R}.
\]

We denote the set of all order \((p, q)\) tensors on \(V\) as \(\mathcal{T}^p_q(V)\).

- \(\mathcal{T}^p_q(V)\) forms a vector space under natural operations, as the cartesian product of \(n\) vector spaces over \(F\) forms a vector space over \(F \times \cdots \times F\).
- \(\mathcal{T}^0_0(V) = V^*, \mathcal{T}^1_0(V) = V, \text{ and } \mathcal{T}^1_1(V) \cong L(V : V)\).
Tensors

Definition

A tensor of order \((p, q)\) is a \((p + q)\)-linear map

\[T : V^* \times \cdots \times V^* \times V \times \cdots \times V \rightarrow \mathbb{R}. \]

We denote the set of all order \((p, q)\) tensors on \(V\) as \(\mathcal{T}^p_q(V)\)

- \(\mathcal{T}^p_q(V)\) forms a vector space under natural operations, as the cartesian product of \(n\) vector spaces over \(F\) forms a vector space over \(F \times \cdots \times F\).
- \(\mathcal{T}^0_1(V) = V^*\), \(\mathcal{T}^1_0(V) = V\), and \(\mathcal{T}^1_1(V) \cong L(V : V)\).
- That is, lower order tensors are the 1 and 2 dimensional arrays we usually work with.
Given any two vectors $v^* \in V^*$ and $v \in V$, we can construct a tensor of order $(1, 1)$.

Consider the function $(v \otimes v^*) : V^* \times V \mapsto \mathbb{R}$, defined as

$$(v \otimes v^*)(u^*, u) = \langle u^*, v \rangle \langle v^*, u \rangle$$

Recall that this is a special case of our earlier example, as $(v \otimes v^*)$ is the product of two linear functions.
Given any two vectors $v^* \in V^*$ and $v \in V$, we can construct a tensor of order $(1,1)$.

Example
Consider the function $(v \otimes v^*) : V^* \times V \mapsto \mathbb{R}$, defined as

$$(v \otimes v^*)(u^*, u) = \langle u^*, v \rangle \langle v^*, u \rangle$$
Given any two vectors $v^* \in V^*$ and $v \in V$, we can construct a tensor of order $(1,1)$.

Example

Consider the function $(v \otimes v^*) : V^* \times V \mapsto \mathbb{R}$, defined as

$$(v \otimes v^*)(u^*, u) = \langle u^*, v \rangle \langle v^*, u \rangle$$
Given any two vectors $v^* \in V^*$ and $v \in V$, we can construct a tensor of order $(1,1)$.

Example

Consider the function $(v \otimes v^*) : V^* \times V \mapsto \mathbb{R}$, defined as

$$(v \otimes v^*)(u^*, u) = \langle u^*, v \rangle \langle v^*, u \rangle$$
Given any two vectors \(v^* \in V^* \) and \(v \in V \), we can construct a tensor of order \((1, 1)\).

Example

Consider the function \((v \otimes v^*) : V^* \times V \mapsto \mathbb{R}\), defined as

\[
(v \otimes v^*)(u^*, u) = \langle u^*, v \rangle \langle v^*, u \rangle
\]

- Recall that this is a special case of our earlier example, as \((v \otimes v^*)\) is the product of two linear functions.
There is a very natural extension of the operator \otimes to allow any number of vectors and covectors.
There is a very natural extension of the operator \otimes to allow any number of vectors and covectors.

Definition

For any collection of vectors $\{v_i\}_{i=1}^p$, and vectors $\{v^j\}_{j=1}^p$, their tensor product is the function

$$v_1 \otimes \cdots \otimes v_p \otimes v^1 \otimes \cdots \otimes v^q : V^* \times \cdots \times V^* \times V \times \cdots \times V \mapsto \mathbb{R},$$

p times q times

defined as

$$(v_1 \otimes \cdots \otimes v_p \otimes v^1 \otimes \cdots \otimes v^q)(u^1, \ldots u^p, u_1, \ldots u_q)$$

$$= \langle u^1, v_1 \rangle \cdots \langle u^p, v_p \rangle \langle v^1, u_1 \rangle \cdots \langle v^q, u_q \rangle$$
There is a very natural extension of the operator \otimes to allow any number of vectors and covectors.

Definition

For any collection of vectors $\{v_i\}_{i=1}^p$, and vectors $\{v^j\}_{j=1}^q$, their **tensor product** is the function

$$v_1 \otimes \cdots \otimes v_p \otimes v^1 \otimes \cdots \otimes v^q : \underbrace{V^* \times \cdots \times V^*}_{p \text{ times}} \times \underbrace{V \times \cdots \times V}_{q \text{ times}} \mapsto \mathbb{R},$$

defined as

$$(v_1 \otimes \cdots \otimes v_p \otimes v^1 \otimes \cdots \otimes v^q)(u^1, \ldots, u^p, u_1, \ldots, u_q)$$

$$= \langle u^1, v_1 \rangle \cdots \langle u^p, v_p \rangle \langle v^1, u_1 \rangle \cdots \langle v^q, u_q \rangle$$
There is a very natural extension of the operator \otimes to allow any number of vectors and covectors.

Definition

For any collection of vectors $\{v_i\}_{i=1}^p$, and vectors $\{v^j\}_{j=1}^q$, their tensor product is the function

$$v_1 \otimes \cdots \otimes v_p \otimes v^1 \otimes \cdots \otimes v^q : \underbrace{V^* \times \cdots \times V^*}_{p \text{ times}} \times \underbrace{V \times \cdots \times V}_{q \text{ times}} \rightarrow \mathbb{R},$$

defined as

$$\left(v_1 \otimes \cdots \otimes v_p \otimes v^1 \otimes \cdots \otimes v^q \right)(u^1, \ldots u^p, u_1, \ldots u_q)$$

$$= \langle u^1, v_1 \rangle \cdots \langle u^p, v_p \rangle \langle v^1, u_1 \rangle \cdots \langle v^q, u_q \rangle$$
Tensors formed from the tensor product of vectors and covectors are called \textbf{simple tensors}.
Tensors formed from the tensor product of vectors and covectors are called **simple tensors**.

In general, not all tensors are simple.
• Tensors formed from the tensor product of vectors and covectors are called simple tensors.
• In general, not all tensors are simple.
• However, we can use simple tensors to build a basis of $\mathcal{T}_d^p(V)$.

Theorem

For any basis of V, $B = \{e_i\}_{i=1}^N$, there exists a unique dual basis of V^* relative to B, denoted $\{e^j\}_{j=1}^N$ and defined as

$$\langle e^j, e_i \rangle = \delta_{j,i} = \begin{cases} 1, & \text{if } i = j \\ 0, & \text{if } i \neq j \end{cases}.$$
Tensors formed from the tensor product of vectors and covectors are called simple tensors.

In general, not all tensors are simple.

However, we can use simple tensors to build a basis of $T^p_q(V)$.

Theorem

For any basis of V, $B = \{e_i\}_{i=1}^N$, there exists a unique dual basis of V^* relative to B, denoted $\{e^j\}_{j=1}^N$ and defined as

$$\langle e^j, e_i \rangle = \delta^j_i = \begin{cases} 1, & \text{if } i = j \\ 0, & \text{if } i \neq j \end{cases}.$$
Theorem

For any basis \(\{ e_i \}_{i=1}^N \) of \(V \), and the corresponding dual basis \(\{ e^i \}_{j=1}^N \) of \(V^* \), the set of simple tensors

\[
\{ e_{i_1} \otimes \cdots \otimes e_{i_p} \otimes e^{j_1} \otimes \cdots \otimes e^{j_q} \}
\]

for all combinations of \(\{ i_k \}_{k=1}^p \in \{ 1, \ldots, N \} \) and \(\{ j_z \}_{z=1}^q \in \{ 1, \ldots, N \} \), forms a basis of \(\mathcal{T}_q^p(V) \).
Theorem

For any basis \(\{ e_i \}_{i=1}^N \) of \(V \), and the corresponding dual basis \(\{ e^j \}_{j=1}^N \) of \(V^* \), the set of simple tensors

\[
\{ e_{i_1} \otimes \cdots \otimes e_{i_p} \otimes e_{j_1} \otimes \cdots \otimes e_{j_q} \}
\]

for all combinations of \(\{ i_k \}_{k=1}^p \in \{ 1, \ldots, N \} \) and \(\{ j_z \}_{z=1}^q \in \{ 1, \ldots, N \} \), forms a basis of \(\mathcal{T}_{q}^{p}(V) \).

- The size of this basis is \(N^{(p+q)} \).
Theorem

For any basis \(\{ e_i \}_{i=1}^{N} \) of \(V \), and the corresponding dual basis \(\{ e^j \}_{j=1}^{N} \) of \(V^* \), the set of simple tensors

\[
\{ e_{i_1} \otimes \cdots \otimes e_{i_p} \otimes e_{j_1} \otimes \cdots \otimes e_{j_q} \}
\]

for all combinations of \(\{ i_k \}_{k=1}^{p} \in \{1, \ldots, N\} \) and \(\{ j_z \}_{z=1}^{q} \in \{1, \ldots, N\} \), forms a basis of \(T_q^p(V) \).

- The size of this basis is \(N^{(p+q)} \).
- Simplified proof in my paper, but our relation of linear dependence is nasty (\(p + q \) nested sums).
Kronecker Product

Can we use this basis to find a component representation of tensors in $\mathcal{T}_q^p(V)$?
Kronecker Product

Can we use this basis to find a component representation of tensors in $T_q^p(V)$? Yes, but first...

Definition

For two matrices $A_{m \times n}$ and $B_{p \times q}$, the Kronecker product of A and B is defined as

$$A \otimes B = \begin{pmatrix}
[A]_{1,1}B & [A]_{1,2}B & \cdots & [A]_{1,n}B \\
[A]_{2,1}B & [A]_{2,2}B & \cdots & [A]_{2,n}B \\
\vdots & \vdots & \ddots & \vdots \\
[A]_{m,1}B & [A]_{m,2}B & \cdots & [A]_{m,n}B
\end{pmatrix}$$

Can be represented by 2-dimensional array, but we consider this product to be a list of lists, table of lists, list of tables, table of tables, etc.
Kronecker Product

Can we use this basis to find a component representation of tensors in $\mathcal{T}^p_q(V)$? Yes, but first...

Definition

For two matrices $A_{m \times n}$ and $B_{p \times q}$, the Kronecker product of A and B is defined as

$$A \otimes B = \begin{pmatrix}
[A]_{1,1}B & [A]_{1,2}B & \cdots & [A]_{1,n}B \\
[A]_{2,1}B & [A]_{2,2}B & \cdots & [A]_{2,n}B \\
\vdots & \vdots & \ddots & \vdots \\
[A]_{m,1}B & [A]_{m,2}B & \cdots & [A]_{m,n}B
\end{pmatrix}$$

- Can be represented by 2-dimensional array, but we consider this product to be a list of lists, table of lists, list of tables, table of tables, etc.
Components as Basis Images

Definition

In general, we define the components of $T \in T_q^p(V)$ to be the $(p + q)$-indexed scalars

$$A_{i_1, \ldots, i_p}^{j_1, \ldots, j_q} = A(e_1^i, \ldots, e_p^i, e_1^j, \ldots, e_q^j).$$
Components as Basis Images

Definition

In general, we define the components of \(T \in T_{q}^{p}(V) \) to be the \((p + q)\)-indexed scalars

\[
A_{i_{1}, \ldots, i_{p}}^{j_{1}, \ldots, j_{q}} = A(e^{i_{1}}, \ldots, e^{i_{p}}, e_{j_{1}}, \ldots, e_{j_{q}}).
\]

- For vectors, this is exactly how we define components \(\langle v, e_{i} \rangle = [v]_{i} \).
Definition

In general, we define the components of $T \in T_q^p(V)$ to be the $(p + q)$-indexed scalars

$$A_{i_1, \ldots, i_p}^{j_1, \ldots, j_q} = A(e_1^{i_1}, \ldots, e_p^{i_p}, e_1^{j_1}, \ldots, e_q^{j_q}).$$

- For vectors, this is exactly how we define components ($\langle v, e_i \rangle = [v]_i$).
- If T is a simple tensor, then the $(p + q)$-dimensional array formed by $A_{i_1, \ldots, i_p}^{j_1, \ldots, j_q}$ is equal to the Kronecker product of the vectors and covectors which make up T.
Example

For $V = \mathbb{R}^2$, consider the vectors $u = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $v^* = \begin{bmatrix} 2 & 1 \end{bmatrix}$, and $w^* = \begin{bmatrix} 1 & 3 \end{bmatrix}$. Let $A = u \otimes v^* \otimes w^*$ and consider
Example

For $V = \mathbb{R}^2$, consider the vectors $u = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $v^* = \begin{bmatrix} 2 & 1 \end{bmatrix}$, and $w^* = \begin{bmatrix} 1 & 3 \end{bmatrix}$. Let $A = u \otimes v^* \otimes w^*$ and consider

$$A_{1,1}^1 = A(e^1, e_1, e_1)$$
$$= \langle \begin{bmatrix} 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \rangle \langle \begin{bmatrix} 2 & 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \rangle \langle \begin{bmatrix} 1 & 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \rangle$$
$$= 2$$

$$A_{1,2}^2 = A(e^1, e_2, e_1) = 1$$

$$A_{1,1}^2 = A(e^1, e_1, e_2) = 6$$

...
Example

Or, we can take the Kronecker product $u \otimes v^* \otimes w^*$ to get
Example

Or, we can take the Kronecker product $u \otimes v^* \otimes w^*$ to get

$$u \otimes v^* \otimes w^* = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \otimes \begin{bmatrix} 2 & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 2 \begin{bmatrix} 1 & 3 \end{bmatrix} & 1 \begin{bmatrix} 1 & 3 \end{bmatrix} \\ 2 \begin{bmatrix} 1 & 3 \end{bmatrix} & 1 \begin{bmatrix} 1 & 3 \end{bmatrix} \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 6 \\ 2 & 6 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 1 & 3 \end{bmatrix}.$$
Either way, we get
Either way, we get

\[
\begin{array}{cccc}
A_{1,1} & A_{1,2} & A_{2,1} & A_{2,2} \\
A_{2,1} & A_{2,2} & A_{2,1} & A_{2,2} \\
A_{1,1} & A_{1,2} & A_{2,1} & A_{2,2} \\
A_{1,1} & A_{2,1} & A_{2,1} & A_{2,2} \\
\end{array}
\]
References

The End