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1 Introduction

An elementary chemical reaction is where two substrates, A and B, are reacted together to
create products, C and D, where

A+B → C +D. (1)

For a chemical reaction to occur, molecules in the gas phase must collide with each other in
the correct orientation and with enough energy to break the bonds in the reactants and form
the bonds for the product. The minimum amount of energy required for a reaction to occur
is the activation energy, Ea. This energy barrier is characteristic for every reaction but the
higher the activation energy, the slower the reaction rate [5]. However as the temperature
of the conditions in which the reaction is run under increases, the kinetic energy of the
molecules of the reactants increases causing more collisions to occur. This increases the ratio
of molecules with kinetic energies greater than the activation energy, pushing the reaction
rate faster [5]. The rate of a reaction not only depends on the temperature and activation
energy, but the frequency of molecule collisions and a rate constant, k. Essentially k is
the number of collisions of molecules that will result in a reaction per second at a given
temperature. The rate constant is unique to a reaction at a given temperature and does
not depend of the concentrations of the reactants; it changes only with temperature and in
the presence of a catalyst. Derived from the rate law of a reaction, the Arrhenius equation
[1,5,8] relates each of these factors, where T is the temperature of the reaction conditions in
Kelvin, R is the gas constant equal to 8.314 J/(mol K), and A is the frequency factor:

k = Ae−Ea/RT . (2)

A is the product of the frequency of collisions and a factor expressing the probability that
the molecule collides with the correct orientation for a reaction to occur [5]. The Arrhenius
equation gives a plot that is nonlinear, but taking the natural logarithm of both sides gives
a linearization of the equation [1,5,8]:

ln k =
−Ea
R

1

T
+ lnA (3)

in the form y = mx + b. A plot of ln k versus 1
T

produces a straight lined graph where
the slope of the function is −Ea

R
and the y-intercept is lnA. This linear relationship allows

the calculation of both the activation energy and frequency factor for a reaction.

1This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Interna-
tional License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.
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Compounds produced in car engines interact with the sunlight in the lower atmosphere
forming a mixture of gases that create photochemical smog [5]. These gas molecules react
together in a number of different reactions that all follow the general structure of an ele-
mentary reaction outlined in (1). One of the reactions in the formation of smog, causing the
decomposition of ozone, is the elementary reaction:

NO(g) +O3(g)→ NO2(g) +O2(g) (4)

where nitrogen dioxide and oxygen gas are produced from nitrogen monoxide and ozone.
The kinetics of this reaction and others like it are important to understanding the effects of
vehicle exhaust on the atmosphere. From experimental data measuring the rate constant as
a function of temperature (Table 1), the plot of k versus T is nonlinear (Figure 1). Using
equation (3) a plot of the data with ln k versus 1

T
is linear (Figure 2).

Table 1: Temperature Dependence of the Rate Constant in the Formation of Nitrogen Diox-
ide and Oxygen Gas

T (K) k (M−1s−1) ln k 1
T

(K−1)

300 1.21× 1010 23.216 3.33× 10−3

325 1.67× 1010 23.539 3.08× 10−3

350 2.20× 1010 23.841 2.86× 10−3

375 2.79× 1010 24.052 2.67× 10−3

400 3.45× 1010 24.264 2.50× 10−3

425 4.15× 1010 24.449 2.35× 10−3

Note: Data adapted from Gilbert et al.
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Figure 1: Nonlinear plot of k versus T .
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Figure 2: Linear plot of ln k versus 1
T
.

From the plot of equation (3) the activation energy and frequency factor can be estimated
for reaction (4):

m =
∆y

∆x
=

(23.814− 24.264)

(2.86× 10−3 − 2.50× 10−3) K−1
= −1.25× 103 K

Ea = −mR = −(−1.25× 103 K) × 8.314 (J/mol K) = 1.04× 104 J/mol = 10.4 kJ/mol

A = eln k = e27.41 = 8.0× 1011.

However the accuracy of the calculations of activation energy and the frequency factor are
critical for accurately modeling the behavior of smog and its effects on the environment.
Thus mathematical techniques other than estimation are used in these calculations. In an
experimental setting, the rate constant can be calculated for a reaction at measured tempera-
tures. Therefore equation (3) can be written as k = mT0+b where k = (ln k1, ln k2, ..., ln kn)
and T0 = ( 1

t1
, 1
t2
, ..., 1

tn
) for n data collections. Then as a matrix-vector product:


t1 1
t2 1
...

...
tn 1


[
m
b

]
=


k1
k2
...
kn

⇒


3.33× 10−3 1
3.08× 10−3 1
2.86× 10−3 1
2.67× 10−3 1
2.50× 10−3 1
2.35× 10−3 1


[
m
b

]
=


23.216
23.539
23.841
24.052
24.264
24.449

⇒ Tx = k.

However, because the data points are found experimentally it is unlikely that k is in the
column space of T and so in almost all experiments the system will have no solution. Instead
it is possible to compute the least-squares vector that minimizes the square of the distance
between the vector and the solution.
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Definition [7] A least-squares solution to the system of equations Tx = k is a vector x that
minimizes |k− Tx|2.

There are multiple computational techniques to find the least-squares solution x, includ-
ing QR decomposition via Gram-Schmidt orthogonalization, single value decomposition,
Cholesky factorization, and the normal equations.

2 Methods

2.1 Normal Equations

Theorem 2.1. The least-squares solution to Tx = k is also a solution to T ∗Tx = T ∗k, the
normal equations, where the function r(x) = ‖Tx− k‖2 is minimized [7].

Proof. The vector k can be decomposed into component vectors where k‖ is in the column
space of T and k⊥ is orthogonal to k‖ and every column of T , k = k‖ + k⊥. Therefore
T ∗k⊥ = 0.

Suppose x is a least-squares solution. Then

T ∗Tx = T ∗k‖

= T ∗(k− k⊥)

= T ∗k− T ∗k⊥
= T ∗k.

So x is a solution to the equation T ∗Tx = T ∗k. If T is full rank then T ∗T and the system
of normal equations are nonsingular and x is a unique least-squares solution [7].

The proof showing that x minimizes r(x) was presented in class and will not be repeated
here.

In this case, because the rate constant and temperature are the only two variables mea-
sured experimentally, T will always have size m > n where n is always 2 and m is equal to
the number of data points collected.

Theorem 2.2. If T is size m×n with m ≥ n, then T has full rank if and only if its columns
form a linearly independent set.

Proof. (⇒) If T has full rank then by definition its rank is equal to n. From basic knowledge
we know that n equals the rank plus the nullity of T where nullity is the dimension of the
null space of T . In this case, since rank is equal to n, the nullity of T is zero. Therefore T
is nonsingular, and from the properties of a nonsingular matrix we known the columns of T
form a linearly independent set. (⇐) If the columns of T are linearly independent then the
nullity of T is zero. Then r(T ) + 0 = n so the rank of T is equal to the number of columns,
n. So by definition T is full rank.
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As shown in the construction of the system Tx = k, the first column of T holds the
experimental temperatures and the second column has ones in every entry. Thus there is no
scalar that can take the first column to the second, so the columns of T will always form a
linearly independent set. Then by Theorem 2.2, T will always have full rank. Because T will
always have full rank, the least-squares solution x will always be unique by Theorem 2.1.
For reaction (4) using the normal equations method:

T ∗Tx = T ∗k


3.33× 10−3 1
3.08× 10−3 1
2.86× 10−3 1
2.67× 10−3 1
2.50× 10−3 1
2.35× 10−3 1



∗ 
3.33× 10−3 1
3.08× 10−3 1
2.86× 10−3 1
2.67× 10−3 1
2.50× 10−3 1
2.35× 10−3 1


[
m
b

]
=


3.33× 10−3 1
3.08× 10−3 1
2.86× 10−3 1
2.67× 10−3 1
2.50× 10−3 1
2.35× 10−3 1



∗ 
23.216
23.539
23.841
24.052
24.264
24.449


[
4.7656× 10−5 0.01679

0.01679 6

] [
m
b

]
=

[
0.40025
143.334

]
m = −1256.73203263⇒ Ea = mR = 10.44847012

kJ

mol
b = 27.405755138⇒ A = eb = 7.983038593× 1011.

2.2 Cholesky Factorization

Similar to the normal equations method is the use of a Cholesky factorization. From the
normal equations, T ∗T is a symmetric matrix due to the matrix-adjoint product. In the
Arrhenius equation the temperatures are measured in Kelvin, where 0 C is 273 K, so the
entries of T ∗T are always positive.

Definition [6] If 〈x, Ax〉 > 0 for all x then A is a symmetric positive definite matrix where
x 6= 0.

Therefore, by definition T*T is a symmetric positive definite matrix.

Theorem 2.3. If T ∗T is symmetric positive definite then there exists a unique upper trian-
gular matrix G with positive diagonal entries such that T ∗T = G∗G [6].

Proof. The first part of this proof was discussed in class but as it is constructive I will repeat
it here. Because the matrix T ∗T is symmetric positive definite, it can be divided into a
block diagonal matrix where the first block is a 1 × 1 matrix. Using row operations and
subsequent column operations T ∗T can be converted into the identity matrix. The net effect
of the row operations is accumulated in a lower triangular matrix and the net effect of the
column operations is stored in an upper triangular matrix.
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T ∗T = A =

[
a y∗

y B

]

=

[ √
a 0∗

1√
a
y I

] [
1 0∗

0 B − 1
a
yy∗

] [ √
a 1√

a
y∗

0 I

]

= G1
∗A1G1

Since T ∗T is a Hermitian matrix, it will always have real diagonal entries. So a will always be
positive. Repeated decompositions on the matrix B− 1

a
yy∗ will eventually give the identity

matrix. The entry in the upper left corner of this matrix will also always be positive because
T ∗T is symmetric positive definite:

a = 〈e2, A1G
−1
1 e2〉 > 0 where x = G−11 e2

After n interations:
A = G∗n . . . G

∗
2G
∗
1IG1G2 . . . Gn = G∗G

Then [2]
T ∗T = G∗G → G∗Gx = T ∗k

For reaction (4) using the Cholesky factorization, we can see

T ∗T =

[
4.7656× 10−5 0.01679

0.01679 6

]

=

[√
4.7656× 10−5 0

0.01679√
4.7656×10−5 1

] [
1 0

0 6− 0.016792

4.7656×10−5

] [√
4.7656× 10−5 0.01679√

4.7656×10−5

0 1

]

=

[√
4.7656× 10−5 0

0.01679√
4.7656×10−5

√
6− 0.016792

4.7656×10−5

][
1 0
0 1

] [√4.7656× 10−5 0.01679√
4.7656×10−5

0
√

6− 0.016792

4.7656×10−5

]

=

[
6.90× 10−3 0

2.4322 0.29093

] [
6.90× 10−3 2.4322

0 0.29093

]

= G∗G.
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We solve the system G∗w = T ∗k for w by augmenting the matrix G∗ with the vector k and
row reducing.Then we can find the least-squares solution by solving the system Gx = w for
x by augmenting the matrix G with the vector w and row reducing. This produces

m = −1256.74352341 ⇒ Ea = mR = 10.44856565
kJ

mol
b = 27.4057876928 ⇒ A = eb = 7.983289484× 1011.

2.3 QR Decomposition

The method of QR decomposition via the Gram-Schmidt procedure gives the least-squares
solution to any type of coefficient matrix for a system of equations, making it a particularly
useful method.

Theorem 2.4. (Gram-Schmidt procedure) [2] Suppose that S = {v1, v2, v3, ..., vp} is a lin-
early independent set of vectors. Define the vectors ui, 1 ≤ i ≤ p by

ui = vi −
u∗1vi
u∗1u1

u1 −
u∗2vi
u∗2u2

u2 −
u∗3vi
u∗3u3

u3 − · · · −
u∗i−1vi
u∗i−1ui−1

ui−1

Then T = {u1,u2,u3, ...,up} is an orthogonal set of nonzero vectors, and 〈T 〉 = 〈S〉.
Theorem 2.5. [2, 6] Suppose that T is an m × n matrix of rank n. Then there exists an
m×n matrix Q whose columns form an orthonormal set, and an upper-triangular matrix R
of size n with positive diagonal entries, such that T = QR.

Proof. The Gram-Schmidt procedure takes any matrix and produces a set of orthogonal vec-
tors from the columns of the matrix. Each vector of the resulting set is a linear combination
of the columns of the original matrix. The coefficients of each linear combination are stored
in the upper triangular matrix R. Then when each orthogonal vector is scaled by the inverse
of its norm to become orthonormal, the matrix R stores the operations:

T = [t1|t2]

= [u1|u2]

[
1

−t∗1t2
t∗1t1

0 1

]−1
Gram-Schmidt on t1 and t2

= [q1|q2]

[
1
‖u1‖

−t∗1t2
t∗1t1

0 1
‖u2‖

]−1
u1 and u2 scaled by their norm

= QR,

where Q has orthonormal columns and R is square upper triangular with full rank. From
the normal equations, we can see

T ∗Tx = T ∗k

R∗Q∗QRx = R∗Q∗k

Rx = Q∗k.
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Then the system Rx = Q∗k is nonsingular when T has full rank [2].

This method will always give a unique least-squares solution because, by Theorem 2.2,
T will always have full rank. For reaction (4), using the QR decomposition,

3.33× 10−3 1
3.08× 10−3 1
2.86× 10−3 1
2.67× 10−3 1
2.50× 10−3 1
2.35× 10−3 1


[

1
−t∗1t2
t∗1t1

0 1

]
=


3.33× 10−3 −0.1732
3.08× 10−3 −0.0851
2.86× 10−3 −0.0076
2.67× 10−3 0.0593
2.50× 10−3 0.1192
2.35× 10−3 0.1721

 TR2 = U


3.33× 10−3 1
3.08× 10−3 1
2.86× 10−3 1
2.67× 10−3 1
2.50× 10−3 1
2.35× 10−3 1


[

1
‖u1‖

−t∗1t2
t∗1t1

0 1
‖u2‖

]
=


0.4824 −0.5954
0.4462 −0.2926
0.4143 −0.0262
0.3868 0.2039
0.3621 0.4098
0.3404 0.5914

 TR1 = Q

T = QR−11 =


0.4824 −0.5954
0.4462 −0.2926
0.4143 −0.0262
0.3868 0.2039
0.3621 0.4098
0.3404 0.5914


[
6.9034× 10−3 2.4322

0 0.2909

]
= QR.

We compute the matrix vector product Q∗k = b and then solve the system Rx = b for x
by augmenting the matrix R with the vector b and row reducing, producing

m = −1256.73203263 ⇒ Ea = mR = 10.44847012
kJ

mol
b = 27.405755138 ⇒ A = eb = 7.983038593× 1011.

The QR decomposition via the Gram-Schmidt orthogonalization procedure is successful with
any matrix as the input. So the successful calculation of a solution is not dependent on the
entries of the matrix. Therefore it is stable in the presence of rounding errors and a valuable
computational tool for experimental results in general.

2.4 Singular Value Decomposition

Theorem 2.6. If T is a real m× n matrix then there exists orthogonal matrices

U = [u1|...|um] and V = [v1|...|vn]

, where U is size m and V is size n, such that T = USV ∗. S is a diagonal matrix with
diagonal entries

√
δ1, ...,

√
δn, where δ1, ..., δn are eigenvalues of the matrix T ∗T [6].
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Proof. This proof was discussed in class and so will not be repeated here.

For reaction (4) using the singular value decomposition, we see the eigenvalues of T ∗T ,
δ1, δ2, are {6.72278×10−7, 6}. Thus, the singular values of T are s1 =

√
δ1 = 8.199 × 10−4

and s2 =
√
δ2 = 2.4495. Placing the singular values as the diagonal entries of a matrix, gives

S = [s1e1|s2e2] =


8.199× 10−4 0

0 2.4495
0 0
0 0
0 0
0 0

 .

The eigenvectors for δ1 and δ2 of T ∗T , x1, and x2, expressed as columns of a matrix, are

V ∗ = [x1|x2]
∗ =

[
−0.999996 0.002798
−0.002798 −0.999996

]
.

The first two columns of the unitary matrix are y1 = 1√
δ1
Tx1 and y2 = 1√

δ2
Tx2 and

then the eigenvectors of TT ∗ for the zero eigenvalue, y3, y4, y5, and y6, are the remaining
columns, so that

U = [y1|y2|y3|y4|y5|y6]

=


−0.6484209 −0.4082489 −0.6425508 −0.3461808 −0.0027296 −0.0339307
−0.3435253 −0.4082489 0.6060519 0.3245593 −0.4845332 −0.2458926
−0.0752094 −0.4082484 0.3352808 0.1676051 0.5944281 0.7265551
0.1565180 −0.4082481 0.1014331 0.3999138 −0.0264467 −0.5969384
0.3638531 −0.4082479 −0.1077991 −0.7408139 0.4112590 0.2215388
0.5467958 −0.4082478 −0.2924158 0.1949166 −0.4919776 −0.0713323

 .

We solve the system SV ∗x = U∗k for x by augmenting the matrix SV ∗ with the vector U∗k
and row reducing. However, the vector U∗k is not in the column space of SV ∗ so the system
is inconsistent, giving a 6 × 3 matrix with ones on the diagonal and numbers very close to
zero everywhere else. In order to find the least-squares solution we write the system in terms
of the normal equations. Let C = SV ∗ and b = U∗k, then solve the system C∗Cx = C∗b
for the least-squares solution x. This gives

m = −1256.73203461 ⇒ Ea = mR = 10.44847014
kJ

mol
b = 27.4057551435 ⇒ A = eb = 7.983038637× 1011.
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The matrix T is full rank and so the diagonal system is nonsingular and requires the use
of other least-squares methods. In other applications where T is rank deficient, its singular
value decomposition produces a system of equations that gives the least-square solution
directly, without the use of a second least-square method.

3 Conclusion

Table 2: Results of Various Least-squares Methods for the Calculation of the Activation
Energy and Frequency Factor of Reaction (4)

Calculation Method Ea (kJ/mol) A

Estimation 10.4 8.0×1011

Normal Equations 10.44847012 7.983038593×1011

QR Decomposition 10.44847012 7.983038593×1011

Singular Value Decomposition 10.44847014 7.983038637×1011

Cholesky Factorization 10.44856565 7.983289484×1011

Each method of least-squares calculation has its own benefits and drawbacks. Some are
more advantageous or accurate in certain situations than others. However as shown in Table
2, each method calculates the activation energy and frequency factor much more accurately
than a direct estimation ever could. The solutions to all the least-squares methods are equal
through the third decimal place for both the activation energy and the frequency factor. The
normal equations and the QR decomposition methods yield, surprisingly, equal results. This
is because the QR decomposition of T via the Gram-Schmidt orthogonalization procedure
preserves the values of its entries exactly when calculated over the field RDF. Therefore the
QR decomposition method is essentially the same as the normal equations method. One
major difference however, is that the QR decomposition is much more stable when there are
rounding errors in the data. When errors in rounding are not an issue, the normal equa-
tions method is preferred because there are significantly less computations involved than in
the QR decomposition method. So when the speed of the computation is the only major
consideration, the normal equations and Cholesky factorization methods are favored as they
compute solutions much more rapidly, especially with large data sets. The singular value
decomposition method is also heavy computationally but is the only method that holds in
cases where T is rank deficient. These methods are extremely valuable both in the informa-
tion they provide and the rapidness and flexibility of the calculation.

In agreement from all the least-squares calculations, the activation energy of reaction (4)
is 10.448 kJ/mol and the frequency factor is 7.983×1011. This is a very low energy barrier as
seen in Figure 3, low enough that the reaction occurs spontaneously. This helps explain the
depletion of ozone in the upper atmosphere as it reacts easily, if not spontaneously, with the
nitrogen monoxide emitted from car engines. It is very important, especially in the modern
world, to have the ability to accurately monitor the behavior of photochemical smog and
chemical interactions with ozone in the atmosphere.
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Ea=10.5 kJ/molNO(g)+ O3(g)

Reactants

Products
NO2(g)+ O2(g)

Reaction

En
er

gy
 (k

J/m
ol

)

-200

0

50

Figure 3: Energy profile for reaction (4).
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