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1 Introduction and Preliminaries
Throughout algebra, we occupy ourselves by studying the structure of various objects, even when
a proper definition of “structure” is elusive. In essence, the goal of analyzing the structure of an
algebraic object is to know as much about the object provided as little information as possible.
In this quest, we have developed many different techniques to do so. Tools in our current linear
algebra arsenal include understanding the implications of two vector spaces being isomorphic, two
linear transformations being similar, etc. One specific and useful tool used frequently in various
areas of algebraic study which we have largely left untouched is the polynomial.

Polynomials
The focus of this paper is on the minimum polynomial of a linear transformation, and the various
consequences which arise when studying the minimum polynomial. However, before we begin, we
shall review basic information about polynomials in general. While typical first courses in linear
algebra focus on vectors spaces with scalars from the field C, we shall focus on vector spaces with
scalars from any field F. Thus, in the course of this paper, the polynomials in question will always
be elements of F[x]. Recall that one of the primary differences between studying vector spaces
over C and vector spaces over F comes from irreducible factors, and consequences of the field
C being algebraically closed. Hence, any polynomial in C[x] can be factored into linear factors,
and so irreducible elements in C[x] are trivial. This, of course, is not true in the general F[x] case.
We shall review some basic information about polynomials from F[x], but we omit the proofs of
theorems as the material should be review.

Definition A polynomial f (x) ∈ F[x], given by f (x) = anxn +an−1xn−1 + ...+a1x+a0, is monic
if an = 1.

Recall that given any polynomial p(x) ∈ F[x], we can “make the polynomial monic” by divid-
ing by the leading term. This process will preserve roots of the polynomial while allowing for
important properties, such as uniqueness, which we will rely on extensively.

0This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.
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Theorem 1.1. (Division Theorem) Given f (x),g(x) ∈ F[x], with g(x) monic, there exist unique
polynomials q(x) and r(x), with degr(x)< degg(x), such that

f (x) = q(x)g(x)+ r(x).

The Division Theorem is reminiscent of the division algorithm for integers. Similarly, the fol-
lowing definition and theorem are similar to the Fundamental Theorem of Arithmetic for integers.

Definition Polynomials f (x) and g(x) are relatively prime if their greatest common divisor is 1.
A polynomial f (x) is irreducible if the only monic non-constant polynomial dividing f is a scalar
multiple of f .

Theorem 1.2. Let p(x) ∈ F[x] be a non-constant monic polynomial. Then p(x) is a unique (up to
order) product of irreducible polynomials.

We have now provided the equipment to discuss polynomials in general. Before we tackle
minimum polynomials, we turn our attention to preliminaries for linear transformations.

Linear Transformations
Given a vectors space V over a field F, we can define an endomorphism on V as a linear map from
V to V . It may come as no surprise that the set of all endomorphisms on V , End(V ), forms a vector
space, if we define scalar multiplication in the canonical way. If V has dimension n, then End(V )
has dimension n2 (which can easily be seen by noticing the correspondence between End(V ) and
the set of all n×n matrices). We shall now define a new algebraic structure, an algebra, and show
that End(V ) is an algebra.

Definition An algebra is a vector space V with a bilinear product

V ×V →V
(v,w)→ vw

that distributes over vector addition

u(v+w) = uv+uw, and
(v+w)u = vu+wu

and satisfies v(aw) = a(vw) = (av)w for all a ∈ F.

As the reader may notice, the definition of an algebra is similar to that of a ring. In fact, every
algebra forms a ring. Rather than referring to this new operator as the bilinear product, we will
simply refer to it as multiplication, although this is not to be confused with scalar multiplication.

We shall now show that End(V ) is, in fact, an algebra. For T,R ∈ End(V ), we define multipli-
cation via

T R = T ◦R.

Clearly, for every v ∈V and R,S,T ∈ End(V ), we can see

(R(S+T ))(v) = R(S(v)+T (v)) = (RS)(v)+(RT )(v) = (RS+RT )(v),
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and
((S+T )R)(v) = (S+T )R(v) = (SR)(v)+(T R)(v) = (SR+T R)(v),

due to the linearity of R, S, and T . Then, for a ∈ F, again due to the linearity of each element, we
can see that R(aT ) = a(RT ) = (aR)T . Therefore, as we have already claimed End(V ) is a vector
space, we can see that End(V ) is also an algebra.

Now that we have defined multiplication for endomorphisms, we can combine the theory of
endomorphisms and polynomials. If we let p(x) be a polynomial in F[x] and T be an endomor-
phism, then we can see that p(T ) is again an endomorphism, owing to End(V ) being an algebra.
That is, for v,w ∈V and a ∈ F,

p(T )(v+w) = p(T )(v)+ p(T )(w), and
p(T )(av) = ap(T )(v).

We have now constructed the tools necessary to study minimum polynomials of linear transforma-
tions.

2 Annihilating, Minimum, and Characteristic Polynomials
Let V be a finite-dimensional vector space and T an endomorphism of V . We are already familiar
with the characteristic polynomial of T , cT (x) = det(xI− [T ]B), where [T ]B is the square matrix
representation of T relative to a basis B. We shall introduce two other polynomials associated with
T : for any nonzero v ∈V there is a T -annihilator polynomial for v, and there is also the minimum
polynomial of T .

The reader should also note that throughout the paper, we will often state that a polynomial
p(x) is satisfied by T (v), for some appropriate endomorphism T and vector v. This, however, is a
misnomer, as T (v) is a vector, and we have not provided a definition for vector multiplication other
than for a vector space of endomorphisms. Rather, what is meant by this statement is a two-step
process: first, the polynomial p(x) is evaluated at T , producing an endomorphism p(T ), which we
then evaluate at v, producing p(T )(v). That is, T (v) satisfying p(x) is to imply p(T )(v) = 0, and
not p(T (v)) = 0.

Theorem 2.1. (Annihilator Polynomial) Let V be an n-dimensional vector space, T an endomor-
phism of V , and v ∈ V a non-zero vector. Then there is a unique monic polynomial of minimum
degree, mT,v(x) such that mT,v(T )(v) = 0. This polynomial has degree at most n.

Proof. Consider the set A = {v,T (v), ...,T n(v)}. Then A is a set of n+1 vectors in an
n-dimensional vector space, and must be linearly dependent. Therefore, there exist scalars
a0,a1, ...,an, not all zero, such that

anT n(v)+an−1T n−1(v)+ ...+a0v = 0.

We can express this linear combination of vectors as a polynomial p(x) evaluated at T (v), where
p(x) = anxn + ...+ a1x+ a0 is such a polynomial. Let as denote the coefficient on the leading
term; that is, the coefficient on the highest power term with a nonzero coefficient. If we define
mT,v(x) = bnxn +bn−1xn−1 + ...+b0, where bi = ai/as, then mT,v is a monic polynomial. Because

3



2 ANNIHILATING, MINIMUM, AND CHARACTERISTIC
POLYNOMIALS

mT,v(T )(v) = 1
as

p(T )(v) = 0, then mT,v(x) is satisfied by T (v), and therefore there exists a monic
polynomial mT,v(x) with degree at most n such that mT,v(T )(v) = 0. Because n is finite, then there
must exist a monic polynomial of minimal degree that T (v) satisfies. To show uniqueness, let
m and m′ be two monic polynomials of minimum degree that T (v) satisfies. Then clearly, T (v)
must satisfy (m−m′). However, because m and m′ are both monic, deg(m−m′) < degm, which
contradicts the minimality of degm. Thus, mT,v(x) is unique.

Definition The polynomial from the previous theorem, mT,v(x), is the T -annihilator polynomial
of v.

After long delay, we shall now define the minimum polynomial for an endomorphism. The
proof relies on End(V ) forming an algebra as well as properties of polynomials.

Theorem 2.2. (Minimum Polynomial) Let V be a finite-dimensional vector space with dimension
n, and T an endomorphism of V . Then there exists a unique monic polynomial of minimum degree,
mT (x), such that mT (T )(v) = 0 for every v ∈ V . This polynomial has a degree less than or equal
to n2.

Proof. Choose a basis B = {b1,b2, ...,bn} for V , and let pi(x) = mT,bi(x), the T -annihilator poly-
nomial for each vector bi. Define q(x) to be the least common multiple of the polynomials
p1(x), p2(x), ..., pn(x). Because each of the pi(x)’s is a monic polynomial, then q(x) must too
be monic. Recall that if f (x) and g(x) are polynomials, then deg f g = deg f +degg. Now, because
q(x) is the least common multiple of n polynomials each with degree at most n, then

degq(x)≤
n

∑
i=1

deg pi(x)≤ n2.

For each v ∈V , v is a linear combination of the basis elements; i.e.,

v =
n

∑
i=1

αibi.

Because q(T ) is again an endomorphism, we can see that

q(T )(v) = q(T )

(
n

∑
i=1

αibi

)

=
n

∑
i=1

αiq(T )(bi).

Because q(x) is a multiple of each pi(x), then q(bi) = 0 for each bi. Therefore,

q(T )(v) =
n

∑
i=1

αiq(T )(bi) = 0,

and we have constructed a monic polynomial satisfied by T (v) for every v ∈V . Thus, because the
degree of q(x) is bounded, there exists a monic polynomial of minimum degree satisfied by T (v)
for every v ∈V . The proof of uniqueness is similar to that in the previous theorem, and is omitted.
The polynomial mT (x) = q(x) satisfies our hypotheses, concluding our proof.
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Definition The polynomial from the previous theorem, mT (x), is the minimum polynomial of the
endomorphism T .

We have shown that the minimum polynomial of an endomorphism T , mT (x), has degree at
most n2. We shall later show that, in fact, degmT (x)≤ n. However, before we show this, we must
introduce one more lemma.

Lemma 2.3. Let V be a vector space, and T an endomorphism of V . For v1,v2, ...,vk ∈ V , let
pi(x) = mT,vi(x). Suppose the polynomials p1(x), p2(x), ..., pk(x) are pairwise relatively prime.
Then, if v = v1 + v2 + ...+ vk, the T -annihilator polynomial of v is given by

mT,v(x) = p1(x)p2(x) · · · pk(x).

Proof. See Weintraub’s A Guide to Advance Linear Algebra, pg. 112.

We are now ready to show that the minimum polynomial of an endomorphism of an
n-dimensional vector space has degree at most n. We shall show that there is a vector v ∈ V such
that mT,v(x) = mT (x). Then, because mT (x) is the T -annihilator of some vector v, and every T -
annihilator polynomial has degree at most n, then the minimum polynomial of T must also have
degree at most n.

Theorem 2.4. Let V be an n-dimensional vector space, and T an endomorphism of V . Then there
is some v ∈V such that mT (x) = mT,v(x).

Proof. Choose B = {v1,v2, ...,vn} to be a basis of V . As we have shown in the theorem proving
the existence of mT (x), mT (x) is the least common multiple of mT,vi for vi ∈ B. We can factor

mT (x) = p1(x) f1 · · · pk(x) fk

into powers of distinct irreducible polynomials. As each pi(x) are pairwise relatively prime, so are
each pi(x) fi . For each i, pi(x) fi must appear as a factor of mT,v j(x) for some v j ∈ B, as mT (x) is
the least common multiple of a set of polynomials. We can write mT,v j(x) = pi(x) fiq(x). Then the
vector ui = q(T )(v j) has annihilator pi(x) fi . By our previous theorem, the vector v= u1+u2+ ...+
uk has a T -annihilator polynomial mT,v(x) = p1(x) f1 · · · pk(x) fk . Therefore, mT,v(x) = mT (x).

Characteristic Polynomials
As linear transformations can be represented via matrices, we now briefly turn our attention to ma-
trices. While characteristic polynomials can be defined for linear transformations, they are gener-
ally computed from matrix representations. First, we will show that similar matrices have identical
characteristic polynomials, and hence every matrix representation of a linear transformation has
the same characteristic polynomial. Then, while we can easily compute the characteristic polyno-
mial of a matrix, it is less clear how to compute a matrix representation of a linear transformation
given a characteristic polynomial. However, we will show that we, in fact, can do so.

Theorem 2.5. Let A and B be similar matrices. Then the characteristic polynomials of A and B,
cA(x) and cB(x), are equal.
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Proof. First, let B = P−1AP. Then we can see that for any x ∈ F,

xI−B = xP−1P−P−1AP

= P−1xP−P−1AP

= P−1(x−A)P.

Therefore,

det(xI−B) = det(P−1(xI−A)P)

= det(P−1)det(xI−A)det(P)

= det(P)−1 det(xI−A)det(P)
= det(xI−A).

Thus, we can see that if [T ]B and [T ]A are two matrix representations of the endomorphism
T with respect to bases B and A, respectively, then cA(x) = cB(x). Thus, cT (x) is a well-defined
polynomial that may be easily computed, unlike mT (x). Now, given a monic polynomial f (x), we
will introduce a way to create a matrix whose characteristic polynomial is f (x).

Definition Let f (x) = xn+an−1xn−1+ · · ·a1x+a0 be a monic polynomial in F[x] of degree n≥ 1.
Then the companion matrix, C( f (x)), of f (x) is the n×n matrix

C( f (x)) =


−an−1 1 0 · · · 0
−an−2 0 1 · · · 0

... . . .
−a1 0 0 · · · 1
−a0 0 0 · · · 0

 ,

where the 1’s are located on the super-diagonal.

While the definition of this matrix may have seemed unmotivated, we shall see that it has con-
venient properties. First, we shall prove a theorem that transitions into later theory. The techniques
used in later proofs will be reminiscent of techniques used here, and so it is for the convenience of
the reader that the following theorem is proved. The proof is directly from Weintraub’s A Guide to
Advanced Linear Algebra.

Theorem 2.6. Let f (x) = xn +an−1xn−1 + · · ·+a0 be a monic polynomial and let A =C( f (x)) be
its companion matrix. Let V = Fn and let T = TA be an endomorphism of V defined by T (v) = Av.
Let v = en be the nth standard basis vector. Then the subspace W of V defined by W = {g(T )(v) :
g(x) ∈ F[x]} is V . Furthermore, mT (x) = mT,v(x) = f (x).

Proof. We see that T (en) = en−1, T 2(en) = en−2, and in general T k(en) = en−k for k≤ n−1. Thus,
the subspace W of V contains the subspace spanned by {T n−1(v), ...,T (v),v} = {e1, ...,en−1,en},
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the standard basis vectors of V , which is all of V . We also see that this set is linearly indepen-
dent, and hence there is no nonzero polynomial p(x) with degree less than or equal to n− 1 with
p(T )(v) = 0. From

T n(v) = T (e1) =−an−1e1−an−2e2 · · ·−aoen

=−an−1T n−1(v)−an−2T n−2(v)−·· ·−a1T (v)−a0v

we see that
0 = anT n(v)+ · · ·+a1T (v)+a0v,

which is to say f (T )(v) = 0. Therefore, mT,v(x) = f (x).
On the one hand, mT,v(x) divides mT (x), an obvious consequence of both polynomials being

satisfied by T (v). On the other hand, since every w ∈V is w = g(T )(v) for some polynomial g(x),

mT,v(T )(w) = mT,v(T )g(T )(v)
= g(T )mT,v(T )(v)
= g(T )(0)
= 0,

for every w ∈V . Thus, mT (x) divides mT,v(x). Therefore, we can see that

mT (x) = mT,v(x) = f (x).

We will present one more lemma involving the companion matrix but will not include the full
proof.

Lemma 2.7. Let f (x) = xn + an−1xn−1 + · · ·+ a0 be a monic polynomial of degree n ≥ 1 and let
A =C( f (x)) be its companion matrix. Then cA(x) = det(xI−A) = f (x).

Proof. The proof follows from an induction argument on n. The reader can find the proof in
Weintraub’s A Guide to Advanced Linear Algebra.

Starting with a monic polynomial p(x), we can now create a linear transformation whose min-
imum polynomial is p(x). This reverse-engineering process can be useful for obtaining linear
transformations with specific properties, specific eigenvalues, and the like. As we will later see,
roots of the minimum polynomial and characteristic polynomial are deeply related, and hence the
obvious application of the companion matrix is to construct linear transformations with specific
eigenvalues. We now turn our attention to invariant subspaces and the relationship between the
characteristic polynomial and minimum polynomial.

Minimum Polynomial vs. Characteristic Polynomial
In this section, we shall investigate the relationship between the minimum and characteristic poly-
nomial of a linear transformation. We will also investigate invariant subspaces and ways to express
a vector space as the direct sum of invariant subspaces found using the minimum polynomial. We
begin with simple material.

7



2 ANNIHILATING, MINIMUM, AND CHARACTERISTIC
POLYNOMIALS

Lemma 2.8. Let V be a vector space, T be an endomorphism of V , and p(x) a polynomial in F[x].
If W is a T -invariant subspace of V , then W is also an invariant subspace of V under p(T ).

Proof. A careful proof of this lemma is a trivial exercise, and so it suffices to say that W is clearly
invariant under T n for any n. Hence, it must too be invariant under linear combinations of powers
of T , and thus is invariant under any p(T ).

The following definition should remind the reader of theory developed from the companion
matrix. We shall generalize the span of a single vector over all polynomials to the span of a set of
vectors over all possible polynomials.

Definition Let V be a vector space over the field F and T be an endomorphism of V . If B =
{v1,v2, ...,vk} is a set of vectors in V , then the T -span of B is the subspace

W =

{
k

∑
i=1

pi(T )(vi) : pi(x) ∈ F[x]

}
.

If V =W , then we shall say that V is T -generated by B. We need to show that the T -span of a
set of vectors does form a subspace of V .

Theorem 2.9. Let V be a vector space and T be an endomorphism of V . For a set of vectors B in
V , the T -span of B, W, is the smallest T -invariant subspace of V containing B.

Before we prove this theorem, we should first clarify what is meant by the “smallest” subspace.
This simply means that W is contained in any T -invariant subspace that contains B.

Proof. Let W be the T -span of B. We can easily show that W is a subspace of V . As 0 ∈ F[x], then
0 ∈W . Further, for w1,w2 ∈W , and α ∈ F, where

w1 =
k

∑
i=1

p1,i(T )(vi) and

w2 =
k

∑
i=1

p2,i(T )(vi),

then w1 +w2 = ∑
k
i=1(p1,i + p2,i)(T )(vi) ∈W . Then,

αw1 = α

k

∑
i=1

p1,i(T )(vi)

=
k

∑
i=1

αp1,i(T )(vi) ∈W.

To show W is T -invariant, consider

T (w1) = T

(
k

∑
i=1

p1,i(T )(vi)

)

=
k

∑
i=1

T (p1,i(T )(vi))

=
k

∑
i=1

q1,i(T )(vi) ∈W,
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where q1,i(x) = xp1,i(x) for all i. We must now show that W is contained in every other T -invariant
subspace containing B.

Let Ŵ be a T -invariant subspace containing B. It is convenient to recall that Ŵ is also invariant
under p(T ) for any polynomial p(x). Thus, for vectors w1,w2, ...,wk ∈ Ŵ ,

k

∑
i=1

pi(T )(wi)

must also be in Ŵ . Therefore, W ⊆ Ŵ , and W must be the smallest T -invariant subspace of V
containing B.

Our following lemma will link together T -invariant subspaces and annihilator polynomials.

Lemma 2.10. Let V be a finite-dimensional vector space, and T an endomorphism of V . For
w ∈ V , let W be the subspace of V T -generated by w. Then the dimension of W is equal to the
degree of the T -annihilator mT,w(x) of w.

Proof. We shall prove this lemma by showing mT,w(x) has degree k if and only if
{w,T (w), ...,T k−1(w)} is a basis of W .

Because W is a finite-dimensional vector space, let dim(W ) = k. Now suppose
{w,T (w), ...,T k−1(w)} is basis for W . Then there is no non-trivial linear combination of the basis
vectors that is equal to 0, and hence no polynomial of degree k−1 or less that is satisfied by T (w).
However, the set of vectors {w,T (w), ...,T k−1(w),T k(w)} is a set of k+1 vectors in a k-dimension
vector space, and hence there is a polynomial with degree k that is satisfied by T (w). Therefore,
the T -annihilator of w, mT,w(x) has degree k.

Now suppose degmT,w(x) = k. Then there is no subset of {w,T (w), ...,T k−1(w)} that forms
a linearly dependent set. Now, T k(w) can be expressed as a non-trivial linear combination of
the vectors {w,T (w), ...,T k−1(w)}, and inductively so can each T k+i for every i ∈ N. Thus,
{w,T (w), ...,T k−1(w)} is a basis for W . This concludes our proof.

The following theorem will be helpful in expressing a vector space as a direct sum of invariant
subspaces found via minimum polynomials.

Theorem 2.11. Let V be a vector space, T and endomorphism of V , and p(x) ∈ F[x]. Then

ker(p(T )) = {v ∈V : p(T )(v) = 0}

is a T -invariant subspace of v.

Proof. It is a trivial matter to show that ker(p(T )) is a subspace of V . Thus, we focus our attention
on showing ker(p(T )) is T -invariant. To show ker(p(T )) is T -invariant, we must show T (v) ∈
ker(p(T )) for all v ∈ ker(p(T )). Clearly,

p(T )(T (v)) = T (p(T )(v))
= T (0)
= 0.

Therefore, T (v) ∈ ker(p(T )), and ker(p(T )) is a T -invariant subspace.
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The following theorem, proved earlier in many texts, discusses the direct relationship between
the minimum polynomial and characteristic polynomial of an endomorphism T . Our proof also
uses the Cayley-Hamilton theorem. Although some texts state the Cayley-Hamilton theorem as
a corollary of the following proof, it was originally proven using completely different methods.
Thus, it is not unreasonable to assume the Cayley-Hamilton theorem. However, a proof of the
following theorem that uses the Cayley-Hamilton theorem can be found in Weintraub [1].

Theorem 2.12. Let V be a finite-dimensional vector space and T an endomorphism of V . Let
mT (x) and cT (x) be the minimum polynomial and characteristic polynomial of T , respectively.
Then

1. mT (x) divides cT (x), and

2. every irreducible factor of cT (x) is an irreducible factor of mT (x).

Proof. 1.) From the Cayley-Hamilton theorem, we know that cT (T ) = 0. Thus, by the division
theorem, there exist unique polynomials q(x) and r(x) such that

cT (x) = q(x)mT (x)+ r(x),

where degr(x) < degmT (x). However, we can clearly see that cT (T ) = 0 implies r(T ) = 0. Be-
cause r(x) has degree strictly less than mT (x), this violates the minimality of the degree of mT (x)
unless r(x) = 0. Thus, mT (x) divides cT (x).

The proof of 2.) can be found in Weintraub’s A Guide to Advanced Linear Algebra.

We shall concretely restate this theorem as follows.

Theorem 2.13. Let mT (x) = p1(x)e1 p2(x)e2 · · · pk(x)ek factor into distinct irreducible polynomials
p1(x), p2(x), ..., pk(x). Then cT (x) = p1(x) f1 p2(x) f2 · · · pk(x) fk , where fi ≥ ei for every i.

The following special case tells us much about the structure of both a vector space and an
endomorphism.

Corollary 2.14. Let V be an n-dimensional vector space and T an endomorphism of V . Then V is
T -generated by a single element if and only if mT (x) is a polynomial of degree n, or, equivalently,
if mT (x) = cT (x).

Proof. We shall begin by showing if the degree of mT (x) is n, then V is T -generated by a sin-
gle element. For v ∈ v, we know that the T -generated subspace of V has dimension equal to
degmT,v(x). Because there exists v̂ ∈ V such that mT,v̂(x) = mT (x), then the dimension of the
subspace T -generated by v̂ is n, and hence is V .

Now, we suppose V is T -generated by a single element, v. Consider the set
B = {v,T (v), ...,T n−1(v)}. If any of the vectors in B can be expressed as a linear combination of
the other vectors in B, then there exists an i < n such that the set {v,T (v), ...,T n−i(v)} is linearly
independent and spans V . However, this is impossible unless i = 1. Therefore, mT (x) has degree
n.

Because mT (x) and cT (x) are both monic polynomials of degree n, and mT (x) divides cT (x),
then mT (x) = cT (x).
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Our final theorem ties together the material accumulated thus far. The theorem relates invariant
subspaces found using the minimum polynomial and the structure of a linear transformation.

Theorem 2.15. Let V be a vector space and let T be an endomorphism of V . Let T have the
minimum polynomial mT (x) that factors into the product of pairwise relatively prime polynomials,
mT (x) = p1(x)p2(x) · · · pk(x). For each i, let Wi = ker(pi(T )). Then each Wi is T -invariant, and
V =W1⊕·· ·⊕Wk.

Proof. See Weintraub, page 125.

We have seen various ways of using the minimum polynomial of a linear transformation. Not
only are they helpful in analyzing the structure of the linear transformation itself, but they also
display underlying structure of a linear transformation. Further, there are many topics that rely on
the minimum polynomial, such as rational canonical form, that were not addressed in this paper.
However, when the reader studies such topics, the material presented here will be an extremely
useful aid.
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