
Tournament Matrices

Imanuel Chen

Copyright (c) 2014 Imanuel Chen.
Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled GNU Free Documentation
License.



1 Introduction

A round-robin tournament consists of n teams (or players) that each play against every other
team once. By using a 0 to represent a loss and a 1 to represent a win, we can use a matrix
to record the outcomes of some round-robin tournament. This matrix is called a tournament
matrix. If we label the teams recorded in a tournament matrix A of size n as {x1, x2, ..., xn},
then we can say that team xi beats team xj if there is a 1 in the entry [A]ij. This means
that there is a corresponding 0 in the entry [A]ji because team xj lost to team xi. Therefore,

[A]ij + [A]ji = 1 for 1 ≤ i < j ≤ n.

Also, teams cannot play themselves, so

[A]ii = 0 for 1 ≤ i ≤ n.

These two properties of tournament matrices can be conjoined into the equivalent state-
ment

A+ AT = Jn − In

where Jn is the n × n matrix of all 1’s and In is the Identity Matrix. Variations of this
equality will be used to describe nonbinary types of tournament matrices in the subsequent
section.

Here is an example of a tournament matrix:
0 0 1 0
1 0 1 0
0 0 0 1
1 1 0 0


A tournament matrix is the adjacency matrix of a tournament. Denoted as T (A), a

tournament for the tournament matrix A is a digraph obtained from the complete graph Kn

by assigning a direction to each edge. The vertices of a tournament are the teams playing in
the round-robin tournament and the orientation to the edges is dependent upon the winner
between two teams. If team xi beats team xj, then there will be a directed edge pointing
from xi to xj, or similarly a 1 in the (i, j) entry of the corresponding tournament matrix.

If the sole purpose of a tournament matrix is simply to represent the outcomes of a
round-robin tournament, it does not seem all that useful as outcomes can be represented
in a variety of ways, such as a graph like stated above. However, a tournament matrix has
properties that can give rankings to the teams playing in the corresponding round-robin
tournament. These rankings can then be used to determine which team was the strongest in
the round-robin tournament and can furthermore be used to make an educated assumption
on who may win in a different tournament. Before getting into rankings, though, some more
information on tournament matrices is needed.
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2 Landau’s Theorem and Nonbinary Types

To show that a tournament matrix exists, we have Landau’s Theorem. But first, some
definitions.

Given A, let R = (r1, r2, ..., rn) be the row sum vector of matrix A, or, in other words, the
vector containing the sums of each row of matrix A in subsequent order. R can also be written
as R = R(A) = A1n, where 1n is the size n column vector of all 1’s. Let S = (s1, s2, ..., sn)
be the column sum vector. For tournament matrices, there is no loss of generality if R is
assumed to be nondecreasing and, as a result, S is assumed to be nonincreasing. The sum
of all elements in a generalized tournament matrix of size n is

n∑
i=1

ri =
n∑

i=1

si =
n∑

i=1

n∑
j=1

[A]ij =
(
n
2

)
The row sum ri of a tournament matrix A is the number of wins that team xi obtained in
the round-robin tournament. For this reason, ri is also referred to as the score of team xi
and the row sum vector R is called the score vector. The class of all tournament matrices
with row sum vector R is denoted by T (R).

Landau characterized the score vectors of tournaments to prove existence of tournament
matrices in T (R) in the following theorem:

Theorem 2.1 Let n be a positive integer and let R = (r1, r2, ..., rn) be a nondecreasing,
nonnegative integral vector. Then T (R) is nonempty if and only if

k∑
i=1

ri ≥
(
k
2

)
for 1 ≤ k ≤ n,

with equality when k = n.

There are multiple nonbinary types of tournament matrices. This paper will only discuss
a few. A generalized tournament matrix is a tournament matrix where values of the entries
are between 0 and 1 inclusive. All properties of a tournament matrix stated above apply to a
generalized tournament matrix, including Landau’s Theorem. In a generalized tournament
matrix A, [A]ij can be interpreted as the probability that team xi will beat team xj; the
row sum vector then gives the expected number of wins of each team. To determine this
probability, we will use the ranking system discussed in the final sections. Finally, the class
of all generalized tournament matrices with row sum vector R is denoted by T g(R).

The rank of a generalized tournament matrix is given in the following theorem.

Theorem 2.2 Let A be a generalized tournament matrix of size n. Then the rank of A is
at least n− 1.

Proof By definition of generalized tournament matrices, A + AT = Jn − In. Append 1n,
the size n column vector of all 1’s, to A and call that matrix B. Suppose that for some real
column vector x of size n, xTB = 0. Then xT1n = 0 and xTA = 0, and hence xTJn = 0 and
ATx = 0, respectively. Consider,

xTJnx− xtx = xT (Jn − In)x = xT (A+ AT )x = (xTA)x+ xT (Atx) = 0.
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Since xTJnx = (xTJn)x = 0, −xTx must be equal to 0. And consequently, x is the zero
vector. xTB = Btx = 0, so the nullity of BT is 0, which means that the rank of BT is n.
The rank of a matrix is equal to the rank of the matrix transposed, so the rank of B is also
n. Therefore, we conclude that the rank of A is at least n− 1.

We can consider a round-robin tournament where each team plays p games against every
other team. The representative matrix of this kind of tournament is called a p-tournament
matrix. A p-tournament matrix A of size n satisfies the equality

[A]ij + [A]ji = p for (1 ≤ i < j ≤ n),

or equivalently,

A+ AT = p(Jn − In).

Therefore, the sum of all elements of a p-tournament matrix is

n∑
i=1

n∑
j=1

[A]ij =
∑

1≤i<j≤n
[A]ij + [A]ji =

∑
1≤i<j≤n

p = p
(
n
2

)
So element [A]ij of a p-tournament matrix represents the number of games in which team xi
defeats team xj. The class of all p-tournament matrices with row sum vector R is denoted
as T (R; p).

Landau’s Theorem can easily be manipulated to account for the existence of p-tournament
matrices:

Theorem 2.3 Let p and n be positive integers. Let R = (r1, r2, ..., rn) be a nondecreasing,
nonnegative integral vector. Then T (R; p) is nonempty if and only if

k∑
i=1

ri ≤ p
(
k
2

)
for 1 ≤ k ≤ n,

with equality when k = n

We can go even more general and define a P -tournament matrix, where P is a nonnegative
integral upper-triangular matrix with 0’s on the main diagonal and [P ]ij is the number of
games to be played between teams xi and xj. Therefore, a P -tournament matrix satisfies
the equalities

[A]ij + [A]ji = [P ]ij for 1 ≤ i < j ≤ n

and

A+ AT = P + P T .

The sum of all entries of a P -tournament matrix is

n∑
i=1

n∑
j=1

[A]ij =
∑

1≤i<j≤n
[A]ij + [A]ji =

∑
1≤i<j≤n

[P ]ij
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and the class of all P -tournament matrices with row sum vector R is denoted by T (R;P ).
Once again, Landau’s Theorem can be manipulated to support the existence of P -

tournament matrices:

Theorem 2.4 Let n be a positive integer and let P be a nonnegative integral upper-triangular
matrix of size n with 0’s on the main diagonal. Let R = (r1, r2, ..., rn) be a nonnegative
integral vector. Then T (R;P ) is nonempty if and only if∑

i∈K
ri ≥

∑
i∈K

∑
j∈K

[P ]ij for K ⊂ {1, 2, ..., n},

with equality when K = {1, 2, ..., n}.

3 Regular and Near-Regular Tournament Matrices

Regular tournament matrices and near-regular tournament matrices are tournament matrices
that are dependent upon the score vector. A tournament matrix A of size n is a regular
tournament matrix if n is odd and every entry of its score vector is (n− 1)/2. For example,0 1 0

0 0 0
1 0 0


is a regular tournament matrix. A tournament matrix B of size n is near-regular tournament
matrix if n is even and half of the elements of the score vector are n/2 and the other half
are (n− 2)/2. Here is an example of a near-regular tournament matrix:

0 0 0 1
1 0 0 0
1 1 0 0
0 1 1 0


Both regular tournament matrices and near-regular tournament matrices are nonsingular

and irreducible. A square matrix A is irreducible if there exists no permutation matrix P such
that PAP T is a block upper-triangular matrix with two or more square diagonal blocks. Both
also have their own unique properties. Regular tournament matrices are normal, unitarily
diagonalizable, and have a spectral radius, the largest sign-independent eigenvalue denoted
as ρ, of (n − 1)/2 that satisfy A1n = ρ1n. Also, given a score vector R of size n where n
is odd, the tournament matrices with the largest spectral radius in T (R) are the regular
tournament matrices.

Near-regular tournament matrices’ properties are not nearly as nice as regular tournament
matrices. For example, there is no easy way to determine the spectral radius of near-regular
tournament matrix; all that is known is that the spectral radius of a near-regular tournament
matrix exceeds (n− 2)/2. Also, it is not known when near-regular tournament matrices are
diagonalizable, though it is known that they are never unitarily diagonalizable.

Despite their unsatisfying properties, there is a nice method to construct near-regular
tournament matrices using tournament matrices.
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Theorem 3.1 Let A be any n× n tournament matrix. Then,

MA=

[
A AT

AT + In A

]
is a 2n× 2n near-regular tournament matrix.

Proof Since A + AT = Jn − In, the first n rows of MA have row sum n − 1 and the last n
rows of MA have row sum n. So the score vector of MA is

MA12n =

[
(n− 1)1n

n1n

]
.

Therefore, by definition, MA is a near-regular tournament matrix.

A more specific near-tournament matrix with this form is one where A is the n× n strictly
lower triangular tournament matrix. This near-tournament matrix is called the Brualdi-Li
Tournament Matrix.

4 Brualdi-Li Tournament Matrices

A more formal definition of the Brualdi-Li Matrix is as follows: the Brualdi-Li matrix is a
near-regular tournament matrix of size 2m defined as

B2n =

[
Ln LT

n

In + LT
n Ln

]
where Lm is the strictly lower m×m tournament matrix. Here is an example of a Brualdi-Li
Matrix: 

0 0 0 0 0 1 1 1
1 0 0 0 0 0 1 1
1 1 0 0 0 0 0 1
1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0
0 1 1 1 1 0 0 0
0 0 1 1 1 1 0 0
0 0 0 1 1 1 1 0


The Brualdi-Li Tournament Matrix B2m has the largest spectral radius among all tournament
matrices of even order. If a tournament matrix A shares the largest spectral radius with
B2m, then A is permutationally similar to the B2m, which means PAP T = B2m where P is a
permutation matrix.

Theorem 4.1 Let B2m be the 2m × 2m Brualdi-Li matrix. Then ρ(B2m) ≥ ρ(T ) for every
2m× 2m tournament T ; in the case of equality, T is permutationally similar to B2m.
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Regular tournaments have much nicer properties compared to near-regular tournaments,
such as being unitarily diagonalizable, having 1n as an eigenvector, and having a common
spectral radius among regular tournaments of the same size. With the Brualdi-Li matrix,
however, near-regular tournaments are given redemption with nice properties such as the
theorem stated above. This theorem also tells us that among all 2m × 2m tournament
matrices (for m sufficiently large), the tournament matrices with maximum spectral radius
are near-regular tournament matrices. On top of that, these matrices are permutationally
similar to B2m. Brualdi-Li matrices are also diagonalizable, though not unitarily.

5 Upsets

Recall that a tournament matrix A with score vector R = (r1, r2, ..., rn) in T (R) is a binary
matrix that is the adjacency matrix of a digraph called a tournament, T (A), with a vertex
set {x1, x2, ..., xn}. A can be used to represent the outcomes of a round-robin tournament
amongst teams represented by the vertices. A victory by team xi against team xj is portrayed
by a 1 in entry (i, j) of A or equivalently an edge from xi to xj in T (A). Since R is a
nondecreasing integer vector, r1 ≤ r2 ≤ ... ≤ rn, which means that if i < j, then the record
of team xi is no better than that of xj. In other words, xi is inferior to xj and xj is superior
to xi. If ri = rj, then superiority is determined by the order the teams are listed (the latter
being the superior). An upset occurs whenever a superior team is defeated by an inferior
team; therefore, an upset is symbolized by a 1 above the main diagonal of A. The total
number of upsets is denoted as

v(A) =
∑
i<j

[A]ij.

v(A) = 0 if and only if A has 0’s on and above its main diagonal.

Theorem 5.1 Let A be a matrix in T (R) with the minimal number of upsets. Then

[A]21 = [A]32 = ... = [A]n,n−1 = 1 and [A]12 = [A]23 = ... = [A]n−1,n = 0.

So in other words, a matrix in T (R) that has the minimal number of upsets has 1’s on the
sub diagonal and 0’s on the super diagonal.

The following theorem describes the actual number of minimal upsets of the matrices
stated in the previous theorem:

Theorem 5.2 Let R be a nondecreasing integral vector satsifying Landau’s theorem. Then
the matrices in T (R) with the minimal number of upsets has

ṽ(R) =
n∑

i=1

|ri(i− 1)|

upsets.
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6 Ranking

We are almost ready to begin ranking teams of a tournament matrix. To compare the teams
in a tournament matrix, it makes sense to look at the score of each team, or the total amount
of wins each has, and simply rank the teams by those numbers with 1st rank awarded to the
team with the most wins. However, there is a better way to rank teams. But first, a couple
theorems.

Theorem 6.1 Let n be a positive integer and let R = (r1, r2, ...rn) be a nondecreasing,
nonnegative integral vector. The following are equivalent.

1. There exists an irreducible matrix in T (R).

2. T (R) is nonempty and every matrix in T (R) is irreducible.

3.
∑k

i=1 ri ≥
(
k
2

)
for 1 ≤ k ≤ n, with equality if and only if k = n.

So if there is one irreducible matrix in T (R) that satisfies Landau’s Theorem, then every
matrix in T (R) is irreducible. Therefore, we focus our attention on irreducible tournament
matrices. The following theorem is called the Perron-Frobenius Theorem.

Theorem 6.2 Let M be a nonnegative, irreducible matrix. Then the spectral radius of M ,
ρ(M), is a unique, positive eigenvalue for M , and there is an entrywise positive eigenvector
v. Such a vector v is called the Perron vector for ρ.

Let us say we have a tournament matrix A. Now suppose we measure the strength of
team xi by computing the sum of the scores of the team that xi beats:

∑
sj, where sj is

the score vector of the team defeated by xi. After all, a strong team should be able to beat
teams that have also beaten a lot of other teams. Since xi beats xj when [A]ij = 1, the
measure of strength is

n∑
j=1

[A]ijsj =
n∑

j=1

([A]ij
n∑

k=1

[A]jk] =
n∑

k=1

n∑
j=1

[A]ij[A]jk.

This is the sum of all entries in the ith row of A2. In other words, A21n is the vector whose
ith entry is the sum of the scores of all teams defeated by xi. We can continue this process by
taking greater and greater powers of A up to some arbitrary postive integer k. For example,
the ith entry of A31n is the sum of the sum of the scores of teams defeated by team xi. As k
increases, Ak1n becomes more sensitive to the relationships among the teams and therefore
provides a better sense of rank to each team.

We will now include the the Perron-Frobenius theorem. Let A be an irreducible tour-
nament matrix. For 1 ≤ k ≤ ∞, let lk = ||Ak1n||. Then the sequence of nonnegative
vectors l−11 A1n, l

−1
2 A21−n, l−13 A31n, ..., l

−1
k Ak1n, ... converges to the Perron vector v for A, or

in other words, v = limk→∞ l
−1
k Ak1n. This is so because this process is basically the method

of Power Iteration, which is the method of finding an eigenvector for the spectral radius.
And as given in the theorem, the Perron vector v is the eigenvector for the spectral radius
of an irreducible matrix. Thus, the relative sizes of the entries in the Perron vector v for

7



A provides a much better way to rank the teams in a tournament. This approach is called
the Kendall-Wei Ranking. Interestingly enough, si > sj does not necessarily mean vi > vj,
though for Brualdi-Li Matrices it does, as will be demonstrated in a bit.

Another method of ranking comes from Ramanujacharyula, who suggests a strength
to weakness ratio to rank the teams in a round-robin tournament. Suppose that A is an
irreducible tournament matrix. The strength part of the ratio comes from the Perron vector
v of A, specifically the right Perron vector which is the vector that satisfies the equality
Av = ρ(A)v and the one we just showed how to calculate above. The weakness then comes
from the left Perron vector w of A which satisfies the equality wTA = ρ(A)wT . To calculate
the left Perron vector, you just use the power method again: the left Perron vector of an
irreducible tournament matrix A is w = limk→∞ b

−1
k 1T

nA
k where bk = ||1T

nA
k||. So by using

these ratios, we determine that team xi is stronger than team xj if vi/wi > vj/wj.
Brualdi-Li Tournament Matrices have nice properties when it comes to rankings. In

relation to the Kendall-Wei ranking method, the team x2n in the round-robin tournament
represented by B2n, where n ≥ 2, ranks the highest, followed in decreasing rank by teams
2n− 1, 2n− 2, ...n+ 1, 1, 2, ..., n. This is shown in the following theorem:

Theorem 6.3 Let v ∈ Rn and w ∈ Rn for n ≥ 2 so that x =

[
v
w

]
∈ R2n is the Perron

vector of B2n. Then

vn < vn−1 < ... < v1 < w1 < w2 < ... < wn

In addition, among all tournaments with an even number of teams, the tournament cor-
responding to the Brualdi-Li matrix has the most well-matched teams in that there is a
minimal variation in their Kendall-Wei ranks.

In relation to the Ramanujacharyula ranking scheme, the teams of the round-robin tour-
nament represented by the Brualdi-Li Matrix B2n are related by the following theorem.

Theorem 6.4 Let v be the right Perron vector of B2n and let w be the left Perron vector of
B2n. Then, we have the following interlacing relationships:

vn
wn

<
v1
w1

<
vn−1
wn−1

<
v2
w2

<
vn−2
wn−2

< ... <
vn/2
wn/2

< 1,

1 <
v2n−n/2+1

w2n−n/2+1

< ... <
vn+3

wn+3

<
v2n−1
w2n−1

<
v2n
w2n

<
vn+1

wn+1

where n/2 is rounded up if n is odd.

Notice that the Kendall-Wei ranking scheme and the Ramanujacharyula ranking scheme
both agree with ranking via row sum vectors for the Brualdi-Li Matrix and in fact for near-
regular tournament matrices in general. The teams in B2n whose row sums are n−2 all have
lower rankings than the teams whose row sums are n.

Can we apply ranking to nonbinary tournament matrices? The answer is yes. For p-
tournament matrices, the same process of determining the Perron vector can be used. This
is allowed because the entries of the Perron vector are relative to eachother so as long as
each team plays the same amount of games, the power method used to determine the Perron
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vector will apply. However, this means there is a problem with P -tournament matrices since
each team does not necessarily play the same amount of games. It is not to say you cannot
rank a P -tournament matrix; it will simply require more precautions, that we will not get
into, so that there is no bias towards teams that have played more games.

Recall that generalized tournament matrices represent the probabilities that a team will
defeat another team. These probabilities can be determined via the Perron vector. Let v
be the Perron vector of a tournament matrix A. Then the probability that team xi defeats
team xj is

πij =
vi

vi + vj
.

A generalized tournament matrix G would then be defined as

[G]ij = πij

So the probabilities are determined after the outcomes have already happened. This means
that generalized tournament matrices are only useful when you already know the rankings.
Since rankings of tournament matrices are relative to the teams in the given tournament,
these rankings cannot be used to compare teams between two different tournaments. There-
fore, generalized tournament matrices can only be used in a situation where the same teams
in a tournament play in another tournament. If you divide a p-tournament into p single
tournaments, you can determine the probabilities of the current tournament being played
by using the rankings of the previous tournaments.

7 One Big Example

We conclude with one big example that demonstrates the main concepts in this paper.
Consider the Brualdi-Li Tournament Matrix B12:

0 0 0 0 0 0 0 1 1 1 1 1
1 0 0 0 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 1 1 1
1 1 1 0 0 0 0 0 0 0 1 1
1 1 1 1 0 0 0 0 0 0 0 1
1 1 1 1 1 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0 0 0
0 1 1 1 1 1 1 0 0 0 0 0
0 0 1 1 1 1 1 1 0 0 0 0
0 0 0 1 1 1 1 1 1 0 0 0
0 0 0 0 1 1 1 1 1 1 0 0
0 0 0 0 0 1 1 1 1 1 1 0


The right Perron vector is

v = limk→∞
Bk
12112

||Bk
12112||

=[
.282 .279 .275 .269 .261 .250 .296 .298 .302 .307 .313 .323

]
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and the left Perron vector is

w = limk→∞
1T
12Bk

12

||1T
12Bk

12||
=[

.323 .313 .307 .302 .298 .296 .250 .261 .269 .275 .279 .282
]

with decimals rounded to three significant figures. The ratios given by Theorem 6.4 are

v6
w6

= .845 <
v1
w1

= .873 <
v5
w5

= .876 <
v2
w2

= .890 <
v4
w4

= .891 <
v3
w3

= .896 < 1

1 <
v10
w10

= 1.116 <
v9
w9

= 1.122 <
v11
w11

= 1.123 <
v8
w8

= 1.142 <
v12
w12

= 1.145 <
v7
w7

= 1.184

According to the Kendall-Wei ranking, the teams 1, 2, ..., 12 rank as follows:

12, 11, 10, 9, 8, 7, 1, 2, 3, 4, 5, 6

whereas the Ramanucharyula scheme ranks the teams as

7, 12, 8, 11, 9, 10, 3, 4, 2, 5, 1, 6.

So which one is better? Well it depends on what you are looking for in these ranks. The
Kendall-Wei ranking method focuses entirely on the strength of a team whereas the Ra-
manucharyula ranking scheme includes weaknesses as well. Notice, however, that the top 6
teams in both lists are the bottom 6 rows of B12 which have row sums 6 and the bottom 6
teams are the top 6 rows of B12 which have row sums 5.

If these same teams were to play again, we can now calculate the probabilties that one
team will defeat another and store them in a generalized tournament matrix. Recall that

the probability team xi will defeat team xj is πij =
vi

vi + vj
. Here are the results:



0 .503 .506 .512 .519 .530 .488 .486 .483 .479 .474 .466
.497 0 .504 .509 .517 .527 .485 .484 .480 .476 .471 .463
.494 .496 0 .506 .513 .524 .482 .480 .477 .473 .468 .460
.488 .491 .494 0 .507 .518 .476 .474 .471 .467 .462 .454
.481 .483 .487 .493 0 .511 .469 .467 .464 .460 .455 .447
.470 .473 .476 .482 .489 0 .458 .456 .453 .449 .444 .436
.512 .515 .518 .524 .531 .542 0 .498 .495 .491 .486 .478
.514 .516 .520 .526 .533 .544 .502 0 .497 .493 .488 .480
.517 .520 .523 .529 .536 .547 .505 .503 0 .496 .491 .483
.521 .524 .527 .533 .540 .551 .509 .507 .504 0 .495 .487
.526 .529 .532 .538 .545 .556 .514 .512 .509 .505 0 .492
.534 .537 .540 .546 .553 .564 .522 .520 .517 .513 .508 0


Notice how there is only a small range of numbers in this matrix. That is because of all
tournaments with an even number of teams, the tournament corresponding to the Brualdi-
Li matrix has the most well-matched teams in the sense of minimizing the variation in the
entries of its Perron vector. So in other words, this is as close as it gets in a 12 team
round-robin tournament.
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8 Conclusion

The Kendall-Wei ranking scheme and the Ramanucharyula ranking scheme are not the only
ranking schemes out there. For example, the idea of minimizing the amount of upsets
in a tournament can be used to determine ranking. Though the Kendall-Wei and Ra-
manucharyula ranking schemes are the most common ranking schemes, a weakness that lies
in these two schemes is that the strength of schedule is quite important. If a strong team
plays mostly weak teams, then the strong team cannot earn a high ranking. Similarly, a
team that loses most of its games but does reasonably well against strong teams can still
earn a high ranking. A solution to this problem goes beyond the scope of linear algebra and
into nonlinear areas of mathematics. But regardless, the Kendall-Wei and Ramanucharyula
ranking schemes are reasonable estimates for rank depending on what you consider impor-
tant in ranking a team or player. So when the next superbowl comes around and you are
betting on a team to win, use the Kendall-Wei and Ramanucharyula ranking schemes to give
yourself the advantage.
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