
A Combinatorial Analysis of Finite Boolean Algebras

Kevin Halasz
khalasz@pugetsound.edu

May 1, 2013

Copyright c©Kevin Halasz. Permission is granted to copy, distribute and/or modify
this document under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the license can be found at
http://www.gnu.org/copyleft/fdl.html.

1



Contents

1 Introduction 3

2 Basic Concepts 3
2.1 Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Antichains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Dilworth’s Chain Decomposition Theorem 6

4 Boolean Algebras 8

5 Sperner’s Theorem 9
5.1 The Sperner Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.2 Sperner’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

6 Extensions 12
6.1 Maximally Sized Antichains . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.2 The Erdos-Ko-Rado Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 13

7 Conclusion 14

2



1 Introduction

Boolean algebras serve an important purpose in the study of algebraic systems, providing
algebraic structure to the notions of order, inequality, and inclusion. The algebraist is always
trying to understand some structured set using symbol manipulation. Boolean algebras are
then used to study the relationships that hold between such algebraic structures while still
using basic techniques of symbol manipulation. In this paper we will take a step back from
the standard algebraic practices, and analyze these fascinating algebraic structures from a
different point of view. Using combinatorial tools, we will provide an in-depth analysis of
the structure of finite Boolean algebras.

We will start by introducing several ways of analyzing poset substructure from a com-
binatorial point of view. After proving several results about posets, one of which is highly
nontrivial, we will then see how we can apply these tools to the study of Boolean algebras.
We will build towards a central result known as “Sperner’s theorem,” before demonstrating
several ways of extending the ideas behind this seminal theorem.

This paper intends to introduce students that are well versed in basic abstract algebra
to algebraic and extremal combinatorics. There is a vast interplay between algebra and
combinatorics at all levels of both theories, making knowledge of combinatorial theory highly
valuable to the student of algebra, and vice-versa. It should be noted that this article is
intended to be an extension of the material in [2], and as such, results that have been proven
in [2] will often be assumed here, although a reference to their proof will be given.

2 Basic Concepts

Though the ultimate goal of this paper will be to analyze Boolean algebras, the tools we
will be using are more generally applicable. Many of these definitions will be stated in terms
of posets. A Boolean algebra is nothing more than a poset with added structure, so all
definitions and propositions about posets can be extended to describe Boolean algebras. We
will present these concepts in their full generality, as they are traditionally defined.

Recall from chapter 19 of [2] that a poset is a set, X, together with a relation, �, such
that:

1. � is reflexive, i.e. ∀x ∈ X x � x

2. � is antisymmetric, i.e. ∀x, y ∈ X x � y & y � x implies y = x

3. � is transitive, i.e. ∀x, y, z ∈ X x � y & y � z implies x � z

While this definition allows for posets of any cardinality, in this paper we will only be
concerned with finite posets. Thus, when we use the term poset below, we will always be
speaking of a finite poset.

2.1 Chains

Any comprehensive treatment of a mathematical structure will surely include an extensive
discussion of its various substructures. We will start by a particularly important poset
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substructure, which, together with its dual, provides the foundation for many compelling
combinatorial problems.

The definitions in this section are derived roughly from those provided in [4].

Definition 2.1: Let P be a poset. A subset C ⊆ P is called a chain if for all x, y ∈ C,
either x � y or y � x, where C is endowed with the same order relation as P .

For the sake of brevity, we will say that two elements of a poset, x and y, are comparable
if x � y or y � x. Note that a chain is nothing more than a totally ordered subset of P . We
will say that a chain has length n if it contains n+ 1 elements.

Example 2.2: Let P be the set of the divisors of 30 ordered by divisibility. A Hasse
diagram for this poset is shown in Figure 2.1. The set C1 = {30, 15, 5, 1} is a chain of length
3, as 1 � 5 � 15 � 30, while C2 = {6, 1} is a chain of length 1. However, the set {2, 3, 6} is
not a chain, as 2 and 3 are not comparable. It should be easy to verify that one can find a
chain by iteratively tracing lines of the diagram connecting some element to another that is
vertically below it.

30

10 15 6

5 2 3

1

Figure 2.1: Poset of divisors of 30 ordered by divisibility

Given a poset P , we say that x covers y in P if y ≺ x and there is no z such that
y ≺ z ≺ x. Thus, looking back to Figure 2.1, we can say that 10 covers 5, but 30 does not
cover 2, even though 2 ≺ 30. A maximal chain is a chain that is contained in no longer
chain. Again referring back to Figure 2.1, we can then see that C1 is maximal, while C2 is
not, as it is contained within the chain {30, 6, 1}.

We will say that a chain x1 ≺ x2 ≺ ... ≺ xn is saturated if xi+1 covers xi for all indices i
such that 1 ≤ i ≤ n−1.The following proposition will allow us to fully characterize maximal
chains.

Proposition 2.3: Let P be a poset and C = {x1 ≺ x2 ≺ ... ≺ xn} be a chain in P .
Then C is maximal if and only if C is saturated and we can find no elements in P either
larger than xn or smaller than x1.

Proof: First, assume that C is saturated and that there are no elements in P larger
than xn or smaller than x1. Let y be some element that is comparable to all of the elements
of C. The minimality and maximality of x1 and xn, respectively, means that x1 � y � xn.
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Let xi be the smallest element of C such that y � xi. The minimality of xi implies that
y � xi−1, so, because y is comparable to every element in C, xi−1 ≺ y. Because xi covers
xi−1, it cannot be the case that y ≺ xi. Thus, it must be the case that y = xi. Therefore,
every element in P that is comparable to all elements of C is in C, so there is no element
that can be added to C to create a larger chain.

We will prove the converse by demonstrating its contrapositive. Suppose that the state-
ment “C is saturated and we can find no elements in P either larger than xn or smaller than
x1” is false. Then there are three possible cases. (1) There is some z ∈ P such that xn ≺ z,
meaning that C is properly contained within the chain x1 ≺ x2 ≺ ... ≺ xn ≺ z. (2) There
is some w ∈ P such that w ≺ x1, meaning that C is properly contained within the chain
w ≺ x1 ≺ ... ≺ xn. Or, (3) There is some xi+1 ∈ C such that xi+1 does not cover xi, meaning
that there is some element u ∈ P such that xi ≺ u ≺ xi+1, so that C is properly contained
in the chain x1 ≺ ... ≺ xi ≺ u ≺ xi+1... ≺ xn. In all cases C is not maximal.

�

We have a few more basic definitions to present before moving on to our first substantial
result.

Definition 2.4: Let P be a poset. We say that P is graded of rank n if all maximal
chains in P are of length n.

If x is an element of a graded poset, P , of rank n, we say that x has rank j, ρ(x) = j, if
the longest saturated chain in P with x as a top element is of length j. Note that if we let
Pj = {x ∈ P |ρ(x) = j}, a set which we will call the jth level of P , then Pi, 0 ≤ i ≤ n, is a
partition of P . We will denote |Pj| as pj.

Example 2.5: Let P be the diamond poset of size 6 illustrated in Figure 2.2(a). We can
see that every maximal chain in P is of the form 0 ≺ x ≺ 1, where x ∈ {a, b, c, d}. Thus, P
is graded of rank 2. Also note that a, b, c, and d all have rank 1, while 1 has rank 2. Finally,
we can see that P is partitioned into P0 = {0}, P1 = {a, b, c, d} and P2 = {1}.

The poset illustrated in Figure 2.2(b), however, is not graded of rank n, as {a, b} is a
maximal chain of length 1, while {a, c, d} is a maximal chain of length 2.

1

a b c d

0

Figure 2.2(a): Diamond poset of size 6
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a

b c

d

Figure 2.2(b): A poset that is not graded

2.2 Antichains

Having discussed briefly the structure general notion of a chain, we now turn to its dual
structure, which will be the central object of study in most of our later results.

Definition 2.6: Let P be a poset. A subset A ⊂ P is an antichain if ∀x, y ∈ A, x and
y are not comparable.

The width of a poset is the size of its largest antichain, denoted w(P ). Looking to the
examples above, we see that in the diamond poset of size 6 (Figure 2.2(a)), any subset of
{a, b, c, d} is an antichain, while the largest antichain is {a, b, c, d} itself, meaning that this
poset has width four. Looking now to the poset shown in Figure 2.2(b), we see that both
{b, c} and {b, d} are antichains, and they are both of maximum size, so the width of this
poset is 2. Also note that both 0 and 1 in Figure 2.2(a) cannot be part of any nontrivial
antichain (i.e. an antichain of size greater than 1) as they are both comparable to every
other element. Finally, if we consider the set of integers between 1 and 10 ordered by the
traditional less than relation, we see that we can have no nontrivial antichains, so the width
of this poset is 1. [4]

3 Dilworth’s Chain Decomposition Theorem

Having defined and described the various combinatorial tools we will be using, we are now
nearly ready to apply them to the study of Boolean algebras. However, one of the results
we will prove about Boolean algebras is easily generalizable, and to state this result with
its full power, we will prove it now, before stepping out of our generalized environment. We
start by defining two important families of subposets that should seem familiar, as they are
analogues of their ring-theoretic namesakes.

Definition 3.1: Let P be a poset. A subset I ⊆ P is called an ideal if x ∈ I and y � x
imply y ∈ I. Meanwhile, a subset R ⊆ P is called a dual ideal if x ∈ I and x � y imply that
y ∈ I.

Just as a principal ideal in ring theory is of the form 〈a〉 = {ar|r ∈ R}, we will call a
poset ideal principal if it is of the form I(a) = {x ∈ P |x � a}, with a similar construct for
dual ideals. Thus, we can see that I(d) = {d, c, a} is an ideal in the poset shown in Figure
2.2(b), while D(15) = {15, 5, 3, 1} is a dual ideal in the poset shown in Figure 2.1.
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We will now prove a quick lemma that motivates our larger theorem.

Lemma 3.2: Let P be a poset. If we can partition P into m chains, then w(P ) ≤ m.

Proof: If we can partition P into m chains, then we cannot have an antichain of size
greater than m, as an antichain can intersect each of these chains at most once before it
contains two comparable elements. Because we know we can form an antichain of size w(P ),
any partition we have of P into chains must contain at least w(P ) chains.

�

The preceding lemma is fairly trivial, but its inclusion is necessary to provide background
for the following theorem. Where the lemma says the size of a partition of a poset into chains
must be at least as large as the width of the poset, the theorem asserts that we can partition
a poset into exactly w(P ) chains. It was introduced and first proven by Dilworth in 1950,
but the proof we will now present is based on the exposition of Perles’ 1963 proof presented
in [3].

Theorem 3.3: Let P be a poset of width k. Then P can be partitioned into k chains.

Proof: We will proceed by induction on the size of P . If |P | = 1, so that P = {x},
then there is only one antichain, namely {x}, which is of size 1, so w(P ) = 1. Also, P can
be partitioned into one chain, namely C = {x}.

Now, we will assume that we have a poset P of size n, and for all posets of size m,
1 ≤ m ≤ n, the given statement holds.

If the only maximal antichain in A ⊆ P is equal either to the set of maximal elements of
P or to the set of minimal elements of P , then we can pick out a maximal element a and a
minimal element b such that b � a. Then P \ {a, b} must have width w(P )− 1, as one of a
or b is in its only maximally sized antichain. Because P \ {a, b} is of size n− 2, we can apply
the induction hypothesis to see that P \ {a, b} has a partition into w(P )− 1 chains. Then,
if we add the chain C = {a, b} to this partition, we have a partition of P into w(P ) chains.

We are then left with the case that there is some antichain A ⊆ P that is not equal to the
set of maximal elements nor the set of minimal elements. In this case, we consider the ideal
I(A) =

⋃
a∈A I(a) = {x ∈ P |∃a ∈ A s.t. x � a} and the dual ideal D(A) =

⋃
a∈AD(a) =

{x ∈ P |∃a ∈ A s.t. a � x}. Because A is maximal, every element in P is comparable
to some element of A, so I(A) ∪ D(A) = P , while the antisymmetry of the order relation
implies I(A) ∩D(A) = A. Meanwhile, because A is neither the set of minimal elements nor
the set of maximal elements, we know that |I(A)| < n and |D(A)| < n, and can apply the
induction hypothesis to see that both I(A) and D(A) have partitions into w(P ) chains, as
the fact that they both contain A implies they both have width w(P ). The largest element of
every chain in I(A) is some unique element of A, while the smallest element of every chain in
D(A) is some unique element of A. Thus, we can “splice” the chains that have intersecting
maximal/minimal elements to get a partition of P into w(P ) chains.

�
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4 Boolean Algebras

We are now set to “reintroduce” readers to Boolean algebras, and discuss them in a com-
binatorial setting. One should recall from [2] that a Boolean algebra is a set B with two
distinguished elements, usually denoted I and O, and three operations defined on its ele-
ments (the binary operations a ∧ b and a ∨ b, and the unary operation a′). Recall also that
it is stipulated that these binary operations be associative, symmetric, and distribute across
each other, and that a ∧ O = O and a ∨ I = I for all a in B. For a full definition of these
structures, one should look to pages 311-312 of [2].

If B is a Boolean algebra, we can define an order on B such that a � b if and only if
a ∧ b = a. We refer the reader to page 313 of [2] to see the proof that B is indeed a poset.
Also note that an atom a ∈ B is defined to be an element such that there exists no b ∈ B
“in between” O and a, i.e. there is no b satisfying O ≺ b ≺ a. As was stated above, in
this paper we are discussing only finite sets. Theorem 19.12 of [2] demonstrated that every
Boolean algebra is isomorphic to the power set of the set of its atoms. In the discipline of
algebra, we are only concerned with describing various structures up to isomorphism. Thus,
we will henceforth use the set [n] = {1, 2, ..., n} to represent the atoms of a given Boolean
algebra, and P ([n]) will then be the Boolean algebra of order 2n, Bn. We are assuming that
the reader is aware of the fact that the power set of a set of size n has size 2n, which can be
seen by realizing that the size of the power set is just the sum of the number of subsets that
can be formed of each possible size, and

∑n
i=1

(
n
i

)
= (1 + 1)n = 2n. We will then equate ∨

with ∪ (the union operation), ∧ with ∩ (the intersection operation), � with ⊆ (the subset
relation), and the prime operation with that of taking complements.

We turn now to our combinatorial analysis of these algebraic structures.

Proposition 4.1: Bn, the Boolean algebra of order 2n, is graded of rank n.

Proof: We are trying to show that every maximal chain in Bn is of length n. Because
every maximal chain must contain both an element that is smaller than no other in Bn and
larger than no other in Bn, we see that any maximal chain must contain both ∅ and [n].
We also know that a maximal chain must be saturated. It should be clear that for two sets
R ⊂ S, there is no set that can be inserted between them if and only if there is a single
element x of the universal set such that S = R∪{x}. Thus, we can form a bijection between
the members of the base set and the coverings in the chain, where (using the notation from
the previous sentence) S covering R would be mapped to x. That this function is injective
is obvious, and that it is onto can be seen by realizing that this process of adding a single
element must traverse Bn from ∅ to [n]. Therefore, a maximal chain must be of length n.

�

Example 4.2: Refer back to Figure 2.1. It should be easy to see that if we map each
element of this poset to its set of prime divisors, this structure is then isomorphic to B3.
Because 1 is the only minimal element, and 30 is the only maximal element, every maximal
chain most contain both 1 and 30. Also, because every maximal chain must be saturated,
it must add no more than one prime divisor each time a new element is added to the chain.
Thus, it should be clear that this Boolean algebra is graded of rank 3. Note, however, that
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not every graded poset is a Boolean algebra, as the poset shown in Figure 2.2(a) is graded
of rank 2, but clearly cannot be isomorphic to any Boolean algebra because it contains 6
elements, whereas the order of every Boolean algebra is a power of 2.

That a Boolean algebra is graded of rank n should come as no surprise, as its possession
of maximal and minimal elements almost guarantees this. This next result, however, should
not be so apparent prior to its demonstration, although its proof will be particularly succinct
and understandable. To understand this proposition, one must recall that a lattice is a slight
generalization of a Boolean algebra (meaning that every Boolean algebra is a lattice), where
it is not required that ∧ and ∨ distribute properly, the unary operator does not exist, and
maximal and minimal elements I and O need not be members of the set. Because a subset
of a lattice, when endowed with the same operations as its superset, inherits important
structural aspects, the only condition necessary to determine if a given set is a sublattice is
that it is closed under ∨ and ∧.

Proposition 4.3: Let Bn be the Boolean algebra of size 2n. Then the largest sublattice
of Bn not containing the empy set is of size 2n−1.

Proof: Because a sublattice L of Bn must be closed under intersections, it cannot contain
x, y ∈ Bn such that x∩y = ∅. Letting xc denote the complement of x, we realize that, by the
definition of set complements, x∩xc = ∅. Thus, for every x ∈ L, xc /∈ L, and because every
set has a unique complement, only half of the elements of Bn can be in L, so we have our
upper bound. Now, remembering that Bn = P ([n]), let L = {x ∈ Bn|1 ∈ x}. If x, y ∈ Bn

both contain 1, clearly so do x ∩ y and x ∪ y. Each set containing 1 can be uniquely paired
with a set not containing 1, namely its complement, so |L| = 2n−1, and we have our desired
lower bound.

�

Note that the example given for the lower bound in the previous proof can be easily
mapped to P ([n] \ {1}) by removing 1 from each subset, and therefore is itself a Boolean
algebra isomorphic to Bn−1.

5 Sperner’s Theorem

We are now set to prove our first major structural theorem concerning Boolean algebras, from
which a second valuable result will follow as a corollary. The theorems proven in this section
and the next will provide the “meat” of our combinatorial analysis of Boolean algebras.

5.1 The Sperner Property

We said above that we were moving on from the generality of posets to a specific discussion
of Boolean algebras, but we must now take a short step back in order to provide a full picture
of this paper’s central theorem. Given a poset, it is natural to ask what sort of bounds we
can place on the size of its largest antichain. In 1927, Emanuel Sperner was able to find
a strict value for the size of the largest antichain in a Boolean algebra [4]. Combinatorial
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mathematicians have since then been trying to answer similar questions for other types of
posets. Certain posets have been shown to have the same bound as Boolean algebras, so a
name has been given to this property.

Definition 5.1: Let P be a graded poset of rank n. We say that P has the Sperner
property if max{|A| |A is an antichain of P} = max{Pj|1 ≤ j ≤ n}, i.e. the size of the largest
antichain in P is the size of the largest rank level Pj.

If a poset has the Sperner property, we call it a Sperner poset. Note that if a poset has
the Sperner property it may still have maximally sized antichains besides its largest rank
level Pj [4].

Example 5.2: The poset in Figure 5.1(a) has the Sperner property. It should be rela-
tively easy to see that this poset is graded of rank 2. Meanwhile, any attempt to construct
an antichain of size 4 fails. Note that this set contains a maximally sized antichain that is
not a rank level, namely {c, d, b}. The poset in Figure 5.1(b), on the other hand, is not a
Sperner poset. Although it is clearly graded of rank 1, as it has no chains of length longer
than 1, the set {a, c, e, f} forms an antichain of size 4 even though each of its rank levels are
only of size 3.

a b

ec d

f

Figure 5.1(a) A poset with the Sperner property
a b c

d e f

Figure 5.1(b): A graded poset without the Sperner property

5.2 Sperner’s Theorem

Sperner’s theorem states that all Boolean algebras have the Sperner property. The proof
we provide here employs a particularly nice lemma, proven independently by Lubell (in
1966), Yamamoto (in 1954), and Meschalkin (in 1963). It was been aptly named the LYM
inequality. We should stress that, although this inequality will serve as no more than a
lemma in the present paper, it is actually a rather powerful tool in extremal set theory. Our
proof will follow that given by Anderson in [1].

Lemma 5.3: Let Bn be a Boolean algebra of size 2n, and let A be an antichain in Bn.
If we let qk denote the number of members of A in the rank level Pk, then
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∑
k

qk(
n
k

) ≤ 1

Proof: We will start by noting that there are n! permutations of [n], a fact given on
page 77 of [2]. We will say that a permutation π “begins with” a set x if π sends the points
1, 2, ..., |x| to the members of x in some order. There are |x|!(n− |x|)! such permutations, as
we have |x| places to which we can map the first |x| elements, and n− |x| places to map the
rest. Also, because A is an antichain, if x, y ∈ A, then no permutations can start with both
x and y, as then one would be a subset of the other. This means that the set of permutations
beginning with one member of A is disjoint from the set of permutations beginning with any
other member of A, so ∑

k

k!(n− k)!qk =
∑
x∈A

|x|!(n− |x|)! ≤ n!

from which we get the desired result by dividing both sides by n!.

�

This result seems, in and of itself, fairly unmotivated, and perhaps even unimportant.
However, we will see the beauty and power of this inequality shortly. This proof will once
again be following [1].

Theorem 5.4: Bn has the Sperner property.

Proof: We start by noting that each rank level, Pi, in Bn is just the the number of sets
of size i containing elements of [n]. So, for all i, pi =

(
n
i

)
, which is maximized when i = bn

2
c,

the largest integer smaller than n
2
. We consider this a basic combinatorial fact, and refer a

confused reader to page 2 of [1]. Now, let A be an antichain in Bn. Using the same notation
qk as was used in the preceding lemma

|A| =
∑
k

qk =

(
n

bn
2
c

)∑
k

qk(
n
bn
2
c

) ≤ ( n

bn
2
c

)∑
k

qk(
n
k

) ≤ ( n

bn
2
c

)
(1)

Where the last step employs Lemma 5.3. We complete the proof by noting that Bn has
an antichain of size

(
n
bn
2
c

)
, namely Pbn

2
c.

�

We can now say that w(Bn) =
(
n
bn
2
c

)
. Thus, we are able to look back to Dilworth’s

chain decomposition theorem, the subject of Section 3, and obtain a further result about the
structure of Boolean algebras.

Corollary 5.5: The Boolean algebra of size 2n, Bn, can be partitioned into
(
n
bn
2
c

)
disjoint

chains.

Proof: This results follows directly from Theorem 3.3 and Theorem 5.4.
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�

Example 5.6: Recall from Example 4.2 that the poset shown in Figure 2.1 is the Boolean
algebra B3 with a different labeling of the vertices. Corollary 5.5 then tells us that we can
partition this poset into

(
3
b 3
2
c

)
= 3 disjoint chains. Refer to Figure 5.2 to see how this is

possible.

30

10 15 6

5 2 3

1

Figure 5.2: A partition of B3 into 3 disjoint chains

6 Extensions

The importance of Sperner’s theorem in the combinatorial study of Boolean algebras should
not be understated. It has inspired countless mathematicians to both ask further questions
about the chain/antichain structure of Boolean algebras, and to employ similar techniques
in combinatorially analyzing other finite sets. We will conclude the mathematical work of
this paper by proving two theorems that provide further insight into the structure of Boolean
algebras while demonstrating typical problems and techniques of Sperner theory.

6.1 Maximally Sized Antichains

Having seen Sperner’s theorem, it is natural to ask if there are any antichains of maximal
size besides the largest rank levels. That there are no such chains was proven by Lovasz in
1979. Our proof will follow the presentation of Lovasz’s proof in [1].

Theorem 6.1: The only antichains of maximal size in Bn are rank levels. Namely, when
n is even, the only antichain of maximal size is Pn

2
, while for odd n Pn+1

2
and Pn−1

2
are the

only two antichains of maximal size.

Proof: Looking back at (1), we see that equality in this equation is achieved only when(
n
k

)
=
(
n
bn
2
c

)
for all k. Therefore, when n is even we can only have sets of size bn

2
c in a

maximal antichain. However, if n is odd, then we have only ruled out elements outside of
Pn+1

2
∪ Pn−1

2
, and have not ruled out some antichain that combines elements of these two

rank levels.
We will prove this cannot be the case by contradiction. For convenience’s sake, let

n = 2m + 1. Suppose that A is an antichain containing some, but not all, of the sets in
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Pm+1. Then, we can choose X, Y ∈ Pm+1 such that X ∈ A, but Y /∈ A. We can then label
the elements of [n] so that X = {n1, n2, ..., nm+1} and Y = {ni, ni+1, ..., ni+m}, for some
index i. Because X ∈ A while Y /∈ A, there is then some smallest index j, where 1 ≤ j < i,
such that Z = {nj, nj+1, ..., nj+m} ∈ A while W = {nj+1, nj+2, ..., nj+m+1} /∈ A. The fact
that Z ∩W ⊆ Z tells us that Z ∩W /∈ A, because A is an antichain containing Z.

However, there is a further condition for equality in (1) that we have yet to discuss,
namely that the LYM inequality be a statement of equality. Our very first step in deriving
that inequality was to note that there is a unique set of permutations beginning with each
element of A, so that if we sum up the number of permutations beginning with x, for each
x ∈ A, our total must be at most the number of permutations of [n]. From this fact, we used
nothing more than algebraic manipulation to derive the ultimate inequality, so we see that
there must be equality in the LYM inequality if and only if every permutation of [n] begins
with some element of A.

We now look back at Z ∩W = {nj+1, nj+2, ..., nj+m}. By the last line of the previous
paragraph, the permutation that begins with nj+1, nj+2, ..., nj+m+1 must be a permutation
that begins with some element of A. If we remember that in the first paragraph of this proof
we ruled out the possibility that a member of A can be any size but m or m+ 1, then we see
that either W or Z ∩W must be in A, for these are the only two sets of the correct size that
contain the elements nj+1, nj+2, ..., nj+m+1. In either case we have a contradiction, as we
previously stipulated that each of these sets are not members of A. Thus, we can conclude
that, if n is odd, there is no antichain in Bn besides Pn+1

2
and Pn−1

2
.

�

6.2 The Erdos-Ko-Rado Theorem

As was mentioned above, Sperner’s work inspired many other mathematicians to work to-
wards characterizing extremal chains and antichains in finite Boolean algebras. We provide
here a famous result in the branch of combinatorics that has come to be called Sperner
theory, thereby offering one last look into the combinatorial structure of Boolean algebras.
This theorem was first published by Erdos, Ko, and Rado in 1961, but we will provide a
more eloquent proof, first given by Katona in 1972. Our presentation will follow that of [5].

Theorem 6.2: Let Bn be the Boolean algebra of size 2n, and let Pk, k ≤ n
2
, be the

kth rank level in Bn. If C ⊆ Pk is a collection of sets such that any two sets in C have a
nonempty intersection, then |C| ≤

(
n−1
k−1

)
.

Proof: Let F = {F1, F2, ..., Fn} contain all subsets of Pk of the form {i, i + 1 (mod
n), ..., i + k − 1 (mod n)}, where 1 ≤ i ≤ n, and the residue class usually represented by 0
is now represented by n. So, for example, Fn−3 = {n− 3, n− 2, n− 1, n, 1, ..., k − 4}. From
now on we will assume that arithmetic inside members of F is modular. Suppose there is
some index j such that Fj ∈ C. We can see that every set in F intersecting Fj is either of
the form {l, l + 1, ..., l + k − 1} or of the form {l − k, l − k + 1, ..., l − 1}, for some index l
such that j < l ≤ j + k − 1. So, there are 2k − 2 sets in F intersecting Fj. We know that
only one of Fl or Fl−k can be in C while still retaining pairwise nonempty intersections, so
only k − 1 sets in F besides Fj could then also be in C, meaning that |F ∩ C| ≤ k.
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Note that our argument in the previous paragraph did not depend on the elements of
each Fj being in increasing modular order, but rather they were just presented that way for
clarity’s sake. Thus, if we let F π be the set obtained from F when some permutation π is
applied to the elements of [n] in each of the Fis, then |F π ∩ C| ≤ k. So,∑

π∈Sn

|F π ∩ C| ≤ k · n!

We can reformulate the left side of this sum by realizing that each pair of sets (Fi, A),
where A ∈ C, is counted exactly once for each permutation that maps Fi to A. If we fix
Fi and A, there are k!(n− k)! permutations that take A to Fi, as there are k choices about
where to map the elements of Fi, and n − k choices about where to map the rest of the
elements of [n]. Remembering that |F | = n, we see

|C| · n · k!(n− k)! ≤ k · n!

Which can be rearranged to form the inequality given in the theorem’s statement.

�

7 Conclusion

Though it is hoped that the reader now understands Boolean algebras to a much greater
degree than before picking up this paper, we have barely scratched the surface of Sperner
theory, or indeed extremal set theory in general. While Boolean algebras are perhaps the
simplest algebra of sets that an extremal set theorist will work with, we have nonetheless
left out myriad beautiful and illuminating results concerning their structure for the sake of
brevity (this is, of course, not a dissertation, or even a senior thesis). All of the resources
listed below would be of value to the interested reader, with [1] in particular focusing en-
tirely on similar material. Extremal set theory is a young yet flourishing branch of discrete
mathematics, and is wide open for anyone with some understanding of abstract algebra to
attack.
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