
Combinatorial Group Theory: An Introduction

Billy Wonderly

University of Puget Sound

Math 434

April 21, 2012

1



CONTENTS Combinatorial Group Theory Billy Wonderly

Contents

1 Introduction 2

2 Free Groups 2

3 Free Group Construction 3

3.1 One Free Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Group Presentations 7

4.1 Presenting Cn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.2 Presentation of D4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5 Max Dehn’s Problems 8

6 Conclusion 10

7 Bibliography 10

1



Combinatorial Group Theory Billy Wonderly

1 Introduction

It is difficult to provide a rigid definition of Combinatorial Group Theory (CGT). The development

of CGT mid-19th century is closely entwined with the development of topology and logic, and has

been ultimately wed to Geometric Group Theory. CGT can be generalized as the theory of free

groups, or as the practice of studying groups using two sets: a set of generators and a set of

relators. This is generally referred to as a presentation of a group.

The point of this paper is to provide an introduction to fundamental concepts and basic results

of the field. However, the perspective of this paper is coming from abstract algebra, so many of

the results regarding logic and topology will not be presented. This paper will cover the definition

of free groups, which are fundamental to the study of CGT, as well as investigate many of their

properties following their construction. The most striking of these results gives us that every group

is isomorphic to a quotient group of a free group. The paper then defines group presentations in

light of this result and concludes with a few examples of group presentations.

2 Free Groups

We begin this paper with a definition of free groups as is found in [1].

Definition 1. Let F be a group and S be a subset of the set of elements of F with a mapping

i : S → {F}. F is a free group with basis S if for any group G and any map φ : S → {G}, φ

can be extended uniquely to a group homomorphism φ′ : F → G satisfying φ = φ′i

Free groups are a fundamental concept when studying CGT, and are going to be a novel concept

to most people reading a paper that provides an introduction to the subject. So a few questions

about uniqueness and existence might be lingering. To start, we will investigate uniqueness of free

groups.

Theorem 1. If F1 and F2 are both free on a set S then there exists an isomorphism ψ : F1 → F2.

Proof. Take i1 and i2 to be mappings from S to F1 and F2, respectively. Then there is a homo-

morphism φ1 : F1 → F2 satisfying i1φ2 = i2 due to the definition of a free group. Similarly, there is
2
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a homomorphism φ2 : F2 → F1 satisfying i2φ1 = i1. Thus, i1=i1φ1φ2 and, because the extensions

are unique, we have that φ1φ2 acts as the identity function on F1. Similarly we get φ2φ1 acts as

the identity function on F2. Thus, φ1 is an isomorphism and φ2 the inverse isomorphism.

Although we can already guess that a free group exists, we are required to prove that fact, and

the construction of a free group makes the term “free”group feel like a bit of a misnomer.

3 Free Group Construction

In order to prove the existence of groups we will take a constructive approach and must define a

few things and construct a few other things using much of the notation from [2].

Definition 2. Given a finite set of distinct elements S = {s1, s2, s3..., sn}, we can define another

set S−1 = {s−11 , s−12 , s−13 ..., s−1n }, with elements distinct from one another and distinct from the

elements of S, in one-to-one correspondence with S. Elements si and s−1i will be called an inverse

pair. We will call the set S the set of generators. Furthermore, we form the set S ′ = S ∪ S−1

and call S ′ the set of letters.

With a set of letters in hand, we continue with a few predictable definitions.

Definition 3. We can form sequences of letters, w = s1s2...sn, with si ∈ S ′ and call these strings

words. Furthermore we define the length of w to be the |w| and have it number of letters in w,

in this case |w| = n. Furthermore, we call the string of length zero to be the empty word and

will denote it as 1.

We form the set of all possible finite length words with letters from S ′ and call it W . We can

provide W with an operation of concatenation meaning the product of w1, w2 ∈ W is w1w2.

However, this will not suffice as a group operation yet. We now define an elementary reduction

of a word to be the removal or insertion of adjacent inverse pairs. A reduced word is a word that

contains no adjacent inverse pairs.

Example 1. Let w = s1s1s1s2s
−1
2 s−11 then we can reduce w to s1s1s

−1
1 then reduce again to get

w′ = s1s1, a fully reduced word.
3
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This defines an equivalence relation ∼ on W by w1 ∼ w2 if we can perform elementary reduc-

tions on w1 and obtain w2. A quick result on the equivalence classes is required to continue, whose

proof mimics one found in [2] (labelled van der Waerden’s method).

Lemma 1. The reduced form of a word is unique and there is only one fully reduced word in a

given equivalence class.

Proof. Let W0 be the set of all fully reduced words in W . Then, for every s ∈ S ′ define: λs : W ∗ →

W ∗ in the following manner: take w ∈ W ∗, if w = s−1v, i.e. w has the letter s−1 in its leftmost

slot, then

λs(w) = v

however, if the product sw is a fully reduced word then

λs(w) = sw

Calculate this function for each w ∈ W ∗ and every s ∈ S ′ and note that λs has an inverse function

which is λs−1 , and thus λs is an element of permutations of the set W ∗, call it P .

Thus, we have a mapping from S ′ to P . From the definition of free groups we can extend this

mapping to give a homomorphism λ′ : F (S) → P . Let s1s2...sn = x ∈ S ′ is a word, then

λx = λs1λs2 ...λsn . Then if we take a ∈ F (S) such that a ∼ x we get

λa(1) = λs1(λs2(...(λsn(1))...)) = λs1(λs2(...sn...)) = λs1(s2...sn) = s1s2...sn

From this we get that a ∈ F (S) provides a function λa such that λa(1) = x, thus λa(1) is the

unique reduced word equivalent to x

We now take F (S) to be the set of equivalence classes of W under ∼ and define the operation

on F (S) to be: given [w1], [w2] ∈ F

[w1][w2] = [w1w2]

and we now show that F (S) forms a group.
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• Identity The empty word.

• Closure Given [w1], [w2] ∈ F (S).[w1][w2] = [w1w2] is the equivalence class of w1w2 ∈ W ,

thus [w1w2] is an element of F (S)

• Associative Given [w1], [w2], [w3] ∈ F (S) then ([w1][w2])[w3] = [w1w2][w3] = [w1w2w3] =

[w1][w2w3] = [w1]([w2][w3])

• Inverses Take an element w = si1si2 ...sim ∈ W , then the inverse is given as w−1 =

s−1im
...s−1i2

s−1i1
. So given an element [w] ∈ F (S) take [w−1] to be its inverse.

With all that we have built so far, we are finally ready to prove existence of a free group.

Theorem 2. Given a set S, F is a free group with a basis set of the equivalence classes of S,

denoted [S] and |[S]| = |S|

Proof. In order to prove |[S]| = |S| we take distinct elements s1, s2 ∈ S. Then [s1] 6= [s2] since the

single letters are fully reduced. Now take any group G and take the mapping φ : [S] → G which

then defines another mapping ψ : S → G such that

φ([s]) = ψ(s)

Now extend the mapping ψ to apply W by defining ψ′ : W → G by

ψ′(w) = ψ′(s1...sn) = ψ′(s1)...ψ
′(sn)

If we have w1 = w2 ⇒ ψ′(w1) = ψ′(w2) since the letters will be equivalent. Thus, ψ′ maps

equivalence classes of words to G and gives us a homomorphism ψ′ : F (S) → G which is an

extension of the mapping φ and satisfies the definition of a free group.

Corollary 1. Given any set S, a free group F with basis S exists.

Proof. With a set S we can go through the construction previously demonstrated to determine

F .

5
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So we see that not only does one free group exist, but as many free groups exist as there are

sets. Also, just as a note, we will say that F (S) is freely generated by the set S.

3.1 One Free Group

An example of a free group is the infinite cyclic group. Take S = {a} and S−1 = {a−1}. Then S

freely generates F (S). We have that the set of reduced words is

{...a−1a−1a−1a−1, a−1a−1a−1, a−1a−1, a−1, 1, a, aa, aaa, aaaa, ...}

or, using obvious notation:

{...a−4, a−3, a−2, a−1, 1, a, a2, a3, a4, ...}

We can take arbitrary elements ai, aj ∈ Fn and take their product: aiaj = aij ∈ Fn. The reader

will note that this group is isomorphic to Z.

The final theorem of this section displays the power of free groups, but we need one quick definition

first.

Definition 4. The rank of a free group is the number of elements in the set of generators.

Theorem 3. A finitely generated group G of order n is isomorphic to a factor group of a free

group of rank n.

Proof. Take the set of generators of G to be S = {g1, ..., gn}, with |S| = n. Now form the free group

F (S) with basis S, giving F (S) rank n. Let φ : S → G be defined to take elements from the set S

and map them to their corresponding group elements in G. Then φ extends to a homomorphism

φ′ : F (S)→ G. Since S is a generating set, φ′ is surjective. By the first isomorphism theorem for

groups we have that G ∼= F (S)/ ker(φ)
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4 Group Presentations

Now that we have determined that all groups are intimately related to quotients of free groups, we

can build up some terminology and results that allows us to study groups from a different point of

view. Since we can define any group as the quotient group of a free group, to make the following

discussion easier we will solidify some terminology.

Definition 5. Let G be a group and S ⊂ {G}. The normal closure of S in G, denoted NS, is

defined as:

NS = {gsg−1|s ∈ S, g ∈ G}

Without proof we note that the normal closure of S is the smallest normal subgroup of G

containing S.

Definition 6. Given that G ∼= F (S)/N , where G is a group, F (S) is the free group over a set S,

and N the normal closure of a set R ⊂ F we say that 〈S|R〉 is a presentation for G. S is called

the set of generators and R is called the set of relators.

Now what can we do with this new construction? All we have to do given a group G, with a

set of generators S, is form the free group F (S), and then find the a subset R of F (S) such that

G ∼= F (S)/NR = 〈S|R〉. Before an example, a few new terms.

Definition 7. If S is finite then G is finitely generated and if R is finite then G is finitely

related. Finally, if G is both finitely generated and related then G is finitely presented.

We also note that a presentation of a group is generally a group of cosets, so although one will

normally see G = 〈S|R〉 written, it is not totally accurate. Rather, G ∼= 〈S|R〉 is the accurate

interpretation. To understand group presentations better, let us look at a few examples.

4.1 Presenting Cn

Let G = 〈a〉, i.e. G is a cyclic group generated by a. Thus we can take our generating set to

be S = {a}. Then the free group F (S) looks just like the free group of the infinite cyclic group.

7
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However, we are in the finite cyclic group and require that an = 1, so we take R = {an} and form

the proper quotient group. Thus each time an is found it gets sent to the identity and Cn has the

presentation 〈a|an = 1〉

4.2 Presentation of D4

From Judson we know that D4 has generators r and s, so we can take S = {r, s}. Now we form

the free group F (S) and we get all possible strings of r’s, s’s and their inverses. However, we know

that in D4, r
4 = id, s2 = id and srsr = id, so we let our set of relators be R = {r4, s2, srsr}. Now

we form the normal closure NR and take the quotient group F (S)/NR. We can very informally

interpret the formation of the quotient group as sending each element of the normal subgroup to

the identity. Now we can say that D4 has a presentation 〈r, s|r4 = 1, s2 = 1, srsr = 1〉, often times

the relators are implicitly equal to 1 unless other noted, so the presentation can also be given

D4 = 〈r, s|r4, s2, srsr〉

5 Max Dehn’s Problems

In the early 1900’s, Max Dehn (a student of David Hilbert) followed in his mentor’s footsteps and

proposed a series of problems regarding finite presentations. The three problems can be found in

any of [1], [2] or [3] (which shows how fundamental they are to CGT) and are stated thus:

1. The Word Problem Given a group G with presentation 〈S|R〉, is there an algorithm which

will determine whether or not a given element in G is equivalent to the identity element?

2. The Conjugacy Problem Given a group G with presentation 〈S|R〉, does an algorithm

exist that will determine if two words are conjugate in G?

3. The Isomorphism Problem Given two groups G1 and G2, each given by finite presenta-

tions 〈S1|R1〉 and 〈S2|R2〉 respectively, is there an algorithm which will determine if G1 is

isomorphic to G2?
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These problems influenced the development of CGT and the following results regarding the word

problem are given. This paper was unable to reach far enough into the machinery of CGT to

provide proofs of the following results, but they provide examples of how powerful a tool CGT is.

These results are presented in either [1] or [2].

Theorem 4. The word problem for finitely generated free groups is solvable.

Proof. This result comes directly from the process of reducing words. In a finitely generated free

group a word w is equal to the identity if w reduces to the empty word.

However, this result carries us only so far. Dehn provided solutions for the word problem for

several topological groups, but no general result was provided until W. Magnus proved his in 1932.

Theorem 5. A group G which has a finite presentation and only one relator has a solvable word

problem

Although this result was very promising and a great achievement in tackling the word problem,

in 1954 a shocking result was proven by P.S. Novikov

Theorem 6. There exists a finitely presented group with an unsolvable word problem.

What was (and is) so shocking about this is that it implies there are groups we are unable to

answer even the most simple question: is an element the identity? Furthermore, whether or not

an element is of finite order. Without being able to answer these questions we have a difficult time

determining if a group is abelian, simple, or trivial. Unfortunately it means that, unfortunately,

given any finite presentation we may not be able to say anything about the group or elements

of the group. This result also implies a negative result for the conjugacy problem for finitely

presented groups: if we can’t even determine if a word is the identity we would have a hard

time determining if a word is even conjugate to the identity. However, some positive results have

surfaced. For example, if a group is known to be abelian then it has a solvable word problem

and the presentation of the group can be reduced by a technique called Nielsen transformations, a

process that can be found in [2]. Additionally, techniques such as small cancellation theory have

been developed to aid the study of group presentations. Finally, solving the word and conjugacy

problems for knot groups allowed mathematicians to classify mathematical knots in the 1970’s.
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6 Conclusion

In the course of this paper we have provided a construction for one of the fundamental elements of

CGT, the free group, and reached several results for free groups. In particular we have discussed

that every group is isomorphic to a quotient group of a free group. This result gave us the structure

to build group presentations. Finally, we examined some important results regarding the famous

“word problem”which exhibit the utility of CGT. I hope this paper provided enough vocabulary

and exposure to help the reader in any future excursion into CGT.
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