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Introduction. The Japanese art of paper folding has a long history, though its foundations in
geometry and algebra have only been explored over the past hundred years or so. In order to begin
to reveal some of the mathematics underlying origami we will first examine what folds are allowed
in origami, what lengths can be constructed, what points can be located, what its relationship is
to classical straightedge and compass constructions, and what origami can do that cannot be done
with only a straightedge and compass.

Constructibility. To begin with, we will need a few basic definitions — we will need to know
what a starting state of a sheet of paper is, and what it is we mean for a point or a line to be
constructible. We begin with two points, which we will call p0 and p1, and we define the distance
between the two points, |p0p1|, to be 1. Note that the points can be either arbitrarily placed before
beginning the construction, or they can simply be two corners of the sheet of paper.

◦ We say that a line l is constructible if we can form a fold along the line l.

◦ We say that a point p is constructible if we can construct two lines that cross at the point p.

◦ We say that a number α is constructible if we can construct two points a distance α apart.

Note that the number 1 was defined at the start by the distance between the two initial points.

Single Fold Origami Axioms. We shall begin with the most basic form of origami — that of
making single folds. This means that we are only permitted to perform one fold at a time, and that
we must unfold the paper before performing a second fold. Under these constraints there are seven
“Origami Axioms,” seven functions we can perform that produce a fold [Lang, 2010, pg 42-43]:

1. Given two points p1 and p2 we can fold a line that passes through them.

2. Given two points p1 and p2 we can fold a line that places point p1 on point p2.

3. Given two lines l1 and l2 we can make a fold that places line l1 onto line l2.

4. Given a point p1 and a line l1 we can make a fold perpendicular to line l1 that passes through
point p1.

5. Given two points p1 and p2 and a line l1 we can make a fold that places point p1 onto line l1
that passes through point p2.

6. Given two points p1 and p2 and two lines l1 and l2 we can make a fold that simultaneously
places point p1 onto line l1 and places point p2 onto line l2.

7. Given a point p1 and two lines l1 and l2 we can make a fold perpendicular to line l2 that
places point p1 on line l1.
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Building the cartesian plane. It would be helpful if we could describe points by their cartesian
coordinates in R2, but to do this we have to first establish that we can form a set of orthonormal
basis vectors — and that we can extend them such that we can sensibly talk about a point with
coordinates (4, 3), for example. Recall that we started with two points, p0 and p1, and that the
distance between them is defined to be 1.

We can take the vector extending from p0 to p1 as the first basis vector e1. First we would like
to find our second basis vector, e2, and to do this we will need to construct a line segment with
magnitude equal to that of e1 that extends from point p0 at a right angle to the first basis vector
e1. Let us call the endpoint of this line segment p′1 (to emphasize that the line segment is one unit
long, and is orthogonal to e1). Then the second basis vector, e2, will be the vector extending from
point p0 to point p′1.

Function 1. Given two points p0 and p1, construct a third point p′1 a distance |p0p1| from point
p0, such that p0p1 ⊥ p0p′1.

. Using Axiom 1, construct the line l1 that passes through the two initial points p0 and p1.

. Using Axiom 4, construct the line l2 perpendicular to l1 and passing through the point p1.

. Using Axiom 4, construct the line l3 perpendicular to l1 and passing through the point p0.

. Using Axiom 3, construct the line l4 that places line l1 onto line l2.

The point just constructed, where lines l4 and l3 cross, is the point p′1.

Proof. The line p0p1 is perpendicular to the line p0p′1 as required since point p′1 lies on
line l3, which is perpendicular to the line l1 by definition, which is constructible using
Axiom 4.

Observe that when forming line l4 we had to place line l1 onto line l2, thus the acute
angle formed by lines l1 and l4 must be equal to that formed by l2 and l4, therefore the
angle formed by lines l1 and l2 is bisected by line l4.

Since lines l2 and l3 are parallel, they are both perpendicular to the common line l1,
we know that the acute angle formed by l2 and l4 is equal to the acute angle formed
by l4 and l3 (by alternate interior angles). Further, since angle ∠p0p1p′1 ∼= ∠p0p′1p1, the
triangle 4p1p0p′1 is an isosceles triangle with |p0p1| = |p0p′1|.

We can form the second basis vector e2 by inputting our initial points p0 and p1 to Function 1,
and using the vector extending from our initial point p0 to the output point p′1.

Next, we need to construct the integers along the e1 and e2 axes. Note that if we are able to
construct a point p2 collinear with the given points p0 and p1 such that |p0p1| = |p1p2|, then by
repeating this process using pk and pk+1 we will be able to build up the integers along the number
line to any desired integer.

Note that if we can extend the number line in one direction we will be able to extend it in the
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other direction, by symmetry. Finally, since we can get a point one unit away from point p0 in the
direction of e2 from points p0 and p1 using Function 1, we will be able to use the same procedure
used to extend the e1-axis using the points p0 and p1 to extend the e2-axis using the points p0 and
the point p′1 produced by Function 1 with the initial points p0 and p1.

Function 2. Given two points p0 and p1 we can construct a third point p2 that is collinear with
the given points, such that |p0p1| = |p1p2|.

. Use Function 1 to produce point p′1 using points p0 and p1, such that ∠p1p0p′1 is a right angle.
Note that lines l1 (through p0 and p1), l2 (through p1 and ⊥ l1), and l3 (through p0 and ⊥ l1)
have been formed in the process of executing Function 1.

. Use Axiom 4 to form line l5 ⊥ l3 through point p′1.

. Use Axiom 3 to form the line l6 that places line l5 on l2.

The point just constructed, where lines l6 and l1 cross, is the point p2.

Proof. Point p2 is clearly collinear with points p0 and p1 since it lies on the same line, l1,
as do points p0 and p1. Also, |p0p1| = |p1p2| by congruent triangles 4p1p0p′1 ∼= 4p2p1p3
(all three angles are equal, as is one side), where point p3 is the intersection of lines l5
and l2.

Since we can now find all the integers, positive and negative, along the e1 and e2 axes, we can now
construct any point in Z×Z by simply extending a perpendicular from an integer constructed on
each axis and finding their intersection.

Moving from Z×Z to Q×Q. I know that two numbers a and b can be divided with a straightedge
and compass using constructed parallel lines, as in [Judson, 2011, pg 301] and in [Dummit and
Foote, 2004, pg 532]. The problem is that we currently can only measure distances along the axes,
while the triangles we have to construct require that we be able to measure diagonally. This takes
some planning, but is not very difficult once you know how to double an angle.

Function 3. Given two constructible numbers α and β, we can construct their ratio α
β

.

. Construct point pa a distance α along the e1-axis, and a point pb a distance β along the
e2-axis, both extending from the point p0.

. Use Axiom 4 to erect a line l1 ⊥ p0pa through point pa.

. Use Axiom 5 to form the line l2 that passes through point p0 and places point pb onto line l1.

. Use Axiom 4 to construct the line l3 perpendicular to the line l2, passing through point pb.
Name the intersection of lines l3 and l1 point p2. Note that |p0p2| = β.

. Use Axiom 1 to construct line l4 which passes through points p0 and p2.

. Use Function 1 to construct point p′1 one unit along the e2 axis.

. Use Axiom 5 to form the line l5 that passes through point p0 and places point p′1 onto line l4.

. Use Axiom 4 to construct the line l6 ⊥ l5 that passes through the point p′1.
Name the intersection of lines l6 and l4 point p3. Note that |p0p3| = 1.
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. Use Axiom 1 to construct the line l0 through the initial points p0 and p1.

. Use Axiom 4 to form the line l7 ⊥ l0 that passes through point p3.
Name the intersection of lines l7 and l0 point pr.

The length of the line segment is equal to the desired ratio — that is, |p0pr| = α
β

.

(Note that the construction of this ratio on the e2 axis is entirely similar, with the axes in the
instructions reversed.)

Proof. To prove that |p0p2| = β, we will have to start by naming the intersection of
lines l2 and l3 as point px. Then the length of the line segments pbpx and pxp2 must
have equal length since they can be superimposed upon each other. Since side p0px is
shared by both 4p0pxpb and 4p0pxp2, the triangles must be congruent (side-angle-side
congruence). Similarly, it can easily be shown that |p0p3| = 1.

Note that 4p0prp3 ∼ 4p0pap2 — that is, both right triangles that share an angle, thus
all three corresponding angles are equal, thus the triangles are similar.

Therefore, the ratio of corresponding sides must be equal: |p0pa||p0p2| = |p0pr|
|p0p3| .

Since we know |p0pa| = α, |p0p2| = β, and |p0p3| = 1, we can substitute, finding that
α
β

= |p0pr|
1

= |p0pr|.

Phew, we now have the ability to construct any point in Q2 by simply extending a perpendicular
from a ratio of integers constructed on each axis and finding their intersection.

The constructible numbers form a field. We saw in the last section that any two constructible
numbers can be divided (though at the time, we only knew how to construct the integers). Now
that we know we can construct the rationals, we suspect that the numbers constructible by origami
may form a field — certainly all that we currently know how to construct forms a field (since the
rationals form a field), but we would like to be sure that the field structure is maintained even if
we discover non-rational numbers that can also be constructed.

To do this, we need to determine whether or not the origami constructible numbers are closed
under addition, subtraction, and multiplication (we already handled division).

Function 4. Given two constructible numbers α and β, we can construct their sum α+β or their
difference α− β.

. Construct pa a distance α along the e1-axis, extending from the point p0.

. Construct pb a distance β along the e1-axis, extending from the point pa.
Note: extend in the same direction as e1 for addition, and in the opposite direction to e1 for
subtraction.

The length |p0pb| = α + β (or α− β if subtracting).
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Proof. It is obvious that the appropriate sum (or difference) has been constructed —
but only if you can indeed construct any previously constructible points based from
point pa, rather than from p0 with the aid of point p1 as we have been.

The only real difficulty, then, is that we do not necessarily have a unit length based
from point pa to work with.

To obtain the needed unit length based from point pa, we will need our axes — so
use Axiom 1 to construct the line l1 = p0pa, and again to construct the line l2 = p0p′1
(where p′1 is the output from Function 1, as usual). Note that l1 ⊥ l2. Now use Axiom
4 to construct the line l3 ⊥ l2 through point p′1, and again to construct the line l4 ⊥ l1
through the point pa. Name the intersection of lines l3 and l4 point pa′ . Finally, use
Axiom 3 to form line l5 that places line l3 onto line l4. Call the intersection of line l5
and l1 point p2.

Since the lines l3 and l1 are one unit apart and the triangle formed is isosceles (as in
the proof of Function 2), the point p2 must be one unit away from the point pa. Thus,
the number β which was constructible from point p0 using point p1 is now constructible
using point pa and point p2.

So now we have established that the set of constructible numbers are closed under addition,
subtraction, and division — and multiplication will be easy, given division.

Function 5. Given two constructible numbers α and β, we can construct their product αβ.

. Construct the point p′1 a distance one along the e2-axis, and point pb a distance β along the
e1-axis.

. Construct the point pb′ a distance 1
β

along the e2-axis using Function 3.

. Construct the point pa a distance α along the e1-axis.

. Construct the point pab a distance α
1
β

= αβ along the e1-axis using Function 3.

So all we had to do to multiply α and β is divide α by the reciprocal of β.

Proof. We used Function 3 to divide one by β, getting us the ratio 1
β
. We then used

Function 3 again to divide α by the ratio 1
β

we just found, and after simplifying this
complex fraction we find that the result is equal to αβ.

Since we now know that the set of constructible numbers is closed under addition, subtraction,
multiplication, and division, we can conclude that the set of constructible numbers form a field.

The field of constructible numbers is closed under taking square roots. Now that we
have a field of rational numbers we would like to see if there are other numbers we can adjoin
to it using origami. Taking as inspiration the methods used in [Judson, 2011, pg 301] and
[Dummit and Foote, 2004, pg 532], we immediately see a method of constructing the square root
of any constructible number — which would mean that the field of origami constructible numbers
contains the entire field of straightedge and compass constructible numbers.
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Function 6. Given a constructible number α, the number
√
α is also constructible.

. Construct the point pa a distance α in the negative e2 direction, extending from point p0.

. Construct the point p′1 using Function 1 (in the positive e2 direction).

. Use Axiom 1 to make the line l1 that passes through points p0 and p1.

. Use Axiom 1 to make the line l2 that passes through the points p0 and p′1.

. Use Axiom 2 to make the line l3 that places point p′1 onto point pa.
Call the intersection of lines l2 and l3 the point pc.

. Use Axiom 5 to make the line l4 that passes through point pc and places point p′1 onto line l1.

. Use Axiom 4 to make the line l5 ⊥ l4 that passes through point p′1.
Call the intersection of lines l5 and l1 the point pr.

The length of the line segment p0pr is equal to
√
α.

Proof. First, we note that the triangle4paprp′1 is a right triangle with the angle ∠paprp′1
a right angle, since the line segment p′1pa forms the diameter of a circle centered at
pc with radius |pcp′1|. Put another way, since the three points p′1, pr, and pa are all a
distance |pcp′1| from the point pc, the three points p′1, pr, and pa all lie on a common
circle centered at point pc (though we did not draw the circle, since we do not get to
use a compass in origami constructions).

Let ∠p0p′1pr = θ and ∠p0prp′1 = φ. Then θ and φ are complementary angles, since the
sum of angles in a triangle must add to π radians and the right angle accounts for π

2

radians — so θ + φ = π
2
.

Since the angle ∠p′1prpa is a right angle, and the angle ∠p0prpa is the complement
to φ, we know that the angle ∠p0prpa = θ. Thus, the angle ∠p0papr = φ since it is
complemented by θ.

Therefore 4p′1p0pr ∼ 4prp0pa (all three corresponding angles are equal).

Similar triangles have equal side length ratios, thus
|p0p′1|
|p0pr| = |p0pr|

|p0pa| .

Rearranging we find that |p0p′1| · |p0pa| = |p0pr| · |p0pr| = |p0pr|2.
Recognizing that |p0p′1| = 1 and |p0pa| = α, we can substitute — when we do this, we
find that 1 · α = α = |p0pr|2.

By taking square roots on both sides of this equation we obtain the desired result:√
α = |p0pr|.

We now have the ability to construct any number using origami that could be constructed using
a straightedge and compass. Nice.

The field of constructible numbers is closed under taking cube roots. Now that our
origami constructions are as powerful as the classical straightedge and compass constructions, lets
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kick it up a notch — lets do something new with origami. Taking inspiration from the solution
to the general cubic in [Koshiro, ], we find that we can take the cube root of any constructible
number.

Function 7. Given a constructible number α, the number 3
√
α is also constructible.

. Use Axiom 1 to construct line l1 through points p0 and p1.

. Use Function 1 to construct the point p′1.

. Use Axiom 1 to construct the line l2 through points p0 and p′1.

. Construct the point pa a distance α along the e2-axis from point p0.

. Construct the point p−a a distance α along the negative e2-axis from point p0.

. Construct the point p−1 a distance one along the negative e1-axis from point p0.

. Use Axiom 4 to make the line l3 ⊥ l1 that passes through point p−1.

. Use Axiom 4 to make the line l4 ⊥ l2 that passes through point pa.

. Use Axiom 6 to make the line l5 that simultaneously places point p−a on line l4 and point p1
onto line l3.
Name the point of intersection of lines l5 and l1 as point p2, and the point of intersection of
the lines l5 and l2 as point p3.

. Use Function 3 to find the ratio of |p0p2| to |p0p3|.

The ratio |p0p2|
|p0p3| = 3

√
α.

Proof. To start, let us observe that the coordinates of point p−a is (0,−α), and of point
p1 is (1, 0). Also, the equation of the line l3 is x+ 1 = 0, and of line l4 is y − α = 0.
Finally, we need the equation of line l5, so we will parameterize it as y = mx+ u.

Let parabola P1 be the parabola with focus p1 and directrix l3. Then the equation for
P1 is y2 = 4x. The line l5 must be tangent to parabola P1 at some point, call this
point (x1, y1). Using implicit differentiation, we find the derivative of the parabola at
the point (x1, y1) to be m = 4

2y1
= 2

y1
. Then the equation of the tangent line must be

y − y1 = m(x− x1) = 2
y1

(x− x1) or equivalently, y = 2
y1
x− 2x1

y1
+ y1.

Therefore the parameter values must be m = 2
y1

and u = −2x1
y1

+ y1, or u = −x1m+ 2
m

.

Since the point (x1, y1) must also lie on the parabola, it must also be the case that

y21 = 4x1, therefore x1 =
y21
4

=
4
m2

4
= 1

m2 . Thus, u = −m 1
m2 + 2

m
= − 1

m
+ 2

m
= 1

m
.

Let parabola P2 be the parabola with focus p−a and directrix l4. Then the equation for
P2 is x2 = −4αy. Since the line l5 must also be tangent to parabola P2 at some point,
we will call this point (x2, y2). Using implicit differentiation, we find the derivative of
P2 at point (x2, y2) to be 2x2

−4α = −x2
2α

= m. The equation of the tangent line must then
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be y = −x2
2α
x+

x22
2α

+ y2.

Therefore the parameter values must be m = −x2
2α

and u = y2 +
x22
2α

or, subsituting
the value of x2, u = y2 + 2αm2. Since the point (x2, y2) lies on P2 it must be the

case that x22 = −4αy2, or rather y2 =
x22
−4α = −αm2. Substituting, we find that

u = −αm2 + 2αm2 = αm2.

Bringing these equations together, we first note that investigating parabola P1 gave us
the equation for line l5 as y = mx + 1

m
and parabola P2 gave us the equation for line

l5 as y = mx + αm2. Setting these forms of the equation equal to each other we find
that mx+ 1

m
= mx+ αm2 or equivalently, 1

m
= αm2.

Rearranging this we find 1
m3 − α = 0 or if we define t as the reciprocal of the slope of

the line l5, we get t3 − α = 0. Observing that t = |p0p2|
|p0p3| , it is clear that t = 3

√
α.

So the field of numbers constructible by single fold origami is closed under the taking of square
roots, as is the field of numbers constructible by straightedge and compass, but the origami con-
structible numbers are also closed under the taking of cube roots.

Conclusion. We determined that the origami constructible numbers form a field closed under
taking square and cube roots — but what does this buy us?

Recalling the classical straightedge and compass problems of doubling the cube and trisecting an
angle, which were eventually found to be unsolvable, we observe that these are easily solvable using
origami. The problem of doubling the cube can be reduced to constructing the cube root of two,
which since the origami constructible numbers are closed under taking cube roots can clearly be
done. The problem of trisecting an angle can be reduced to solving a cubic equation — and the
general cubic can be solved in a variety of ways using single fold origami [Koshiro, ] [Hull, 2011].

Exploring what more can be accomplished using origami, such as solving higher degree equations
using folds other than the single fold Axioms presented in this paper [Lang, 2004], will have to be
reserved for a future paper.
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