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1 Introduction

In group theory, we are often interested in classifying all groups of a certain order by isomor-
phism class, which demonstrates that they have the same structure. For orders up to 15, we have
already determined the isomorphism classes. This paper will extend our classification to the groups
of order 16. To begin, we introduce some basic notation:

Notation A group of order 16 will be denoted G. The symbol ∼= will stand for ’isomorphic’.

In order to describe any group, the representation G = {aα1
1 a

α2
2 ...a

αn
n : aβ11 = aβ22 = ...aβnn =

e, a2a1 = a1a2a1,2, a3a1 = a1a3a1,3, ...anan−1 = an−1anan−1,n} will be used. This tells us the el-
ements of G in terms of generators and the orders of the generators. The representation also
describes how the generators commute, so we can condense a string of the elements into the form
used in the presentation. Two notes: I have left out a piece where, occasionally, powers of the
generators equal each other when they are less than their orders (which would also be stated).
Also, you cannot have just any old representation, but that is a different paper topic. We begin
by noting that the prime factorization of 16 is 16 = 24, so any group of order 16 is a p-group (a
group whose order is the power of a prime, in this case 2). As such we will classify with factor
groups. In particular, we will use the center of a group in our classification:

Definition The center of any group is the set of all elements that commute with every element in
a group, denoted Z(G) = {z : zg = gz, ∀g ∈ G}.

We have the following two theorems about the center:

Theorem 1.1 For a p-group, The center of a group is a nontrivial subgroup (Judson, 186).

Theorem 1.2 The center of a group is also a normal subgroup (Judson, 186).

To classify the groups of order 16, we consider the different cases for the order of the center.
Since Z(G) is a nontrivial subgroup, Z(G) must divide the order of the group, so the possi-
bilities for |Z(G)| are 16, 8, 4, and 2. Based on the center, we then build the factor group
G/Z(G), which will have order |G/Z(G)| = |G|/|Z(G)|. Then using the Correspondence Theo-
rem, we deduce the properties of the group for various cases.

Theorem 1.3 (Correspondence Theorem) If N is a normal subgroup of any group G. Then
S 7→ S/N is a one-to-one correspondence between the set of subgroups S containing N and the
subgroups of G/N . Furthermore, the normal subgroups in S correspond to normal subgroups
in G/N , and if a subgroup of G/N is contained in a subgroup of G/N , then the corresponding
subgroups in S share the same relation (Judson, 147).

From this, we see that we need to know the groups of order 8, 4, and 2, shown in the table
below.

Name Order Symbol Representation Number and Str-
ucture of Non-
trivial Subgroups

Center

Integers mod 2 2 Z2 {aα : a2 = e} None abelian
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Name Order Symbol Representation Number and Str-
ucture of Non-
trivial Subgroups

Center

Integers mod 4 4 Z4 {aα : a4 = e} 1 isomorphic to Z2 abelian
Klein 4 group 4 Z2 × Z2 {aαbβ : a2 = b2 = e, ba = ab} 3 isomorphic to Z2 abelian
Integers mod 8 8 Z8 {aα : a8 = e} 1 isomorphic to Z4

1 isomorphic to Z2

abelian

Direct Product
of Z4 and Z2

8 Z4 × Z2 {aαbβ : a4 = b2 = e, ba = ab} 2 isomorphic to Z4

1 isomorphic to Z2

×Z2, 3 isomorph-
ic to Z2

abelian

Direct Product
of Z2, Z2 and Z2

8 Z2 × Z2

×Z2

{aαbβcγ : a2 = b2 = c2 = e,
ba = ab, ca = ac, cb = bc}

7 isomorphic to
Z2×Z2, 7 isomor-
phic to Z2

abelian

Quaternion
Group

8 Q {aαbβ : a2 = b2, a4 = b4 = e,
ba = a−1b}

3 isomorphic to Z4

1 isomorphic to Z2

{e, a2} ∼=
Z2

Dihedral Group 8 D4 {aαbβ : a4 = b2 = e,
ba = a−1b}

1 isomorphic to Z4

2 isomorphic to Z2

×Z2, 5 isomorph-
ic to Z2

{e, a2} ∼=
Z2

Table 1: Groups of Order 2, 4, and 8 (Source: sagenb.org)

2 |Z(G)| = 16

To begin, assume |Z(G)| = 16 = |G|. Since a subset of a finite set equals the set if they have
the same number of elements, Z(G) = G. Next, we note a fairly obvious fact:

Theorem 2.1 A group is abelian if and only if Z(G) = G
Proof: If a group is abelian, then every element commutes with every element, so every
element is in the center. Likewise, if the center equals the group, then every element is in
the center and commutes with every element, and thus the group is abelian.

Since our group is abelian, we can use the Fundamental Theorem of Abelian Groups:

Theorem 2.2 (Fundamental Theorem of Finite Abelian Groups) Every finite abelian group
is isomorphic to a direct product of cyclic groups of the form Zpα11

×Zpα22
× ...Zpαnn , where the

pi are (not necessarily distinct) primes (Judson, 172).

Since the group is isomorphic to the direct product of cyclic groups, we note that the only
possibilities for the order of cyclic groups are powers of 2. The sum of the powers must equal 4, so
we have 5 ways of writing 4 as the sum of positive integers: 4=4, 4=3+1, 4=2+2, 4=2+1+1, and
4=1+1+1+1. Thus, there are five abelian isomorphism classes for the groups of order sixteen,

G ∼= Z24 = Z16, G ∼= Z23 × Z2 = Z8 × Z2, G ∼= Z22 × Z22 = Z4 × Z4,
G ∼= Z22 × Z2 × Z2 = Z4 × Z2 × Z2, G ∼= Z2 × Z2 × Z2 × Z2

We will put these in the table below, with their representations.
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Name Symbol Representation Center
Integers mod 16 Z16 {aα : a16 = e} abelian
Direct Product
of Z8 and Z2

Z8 × Z2 {aαbβ : a8 = b2 = e, ba = ab} abelian

Direct Product
of Z4 and Z4

Z4 × Z4 {aαbβ : a4 = b4 = e, ba = ab} abelian

Direct Product
of Z4, Z2 and Z2

Z4 × Z2

×Z2

{aαbβcγ : a4 = b2 = c2 = e, ba = ab, ca = ac, cb =
bc}

abelian

Direct product
of Z2, Z2, Z2

and Z2

Z2×Z2×
Z2 × Z2

{aαbβcγdδ : a2 = b2 = c2 = d2 = e, ba = ab, ca =
ac, da = ad, cb = bc, db = bd, dc = cd}

abelian

Table 2: Abelian Groups of Order 16

3 Using the Correspondence Theorem

From this point on, I will follow a basic method for determining the non-abelian groups. I will
start by stating the order of the center, and then from this state the possibilities for the group
based on the structure of the center and factor group. In doing so, I hope to either determine
if a contradiction occurs, or find a representation for the group based on the elements needed to
generate the group and how they commute. I will thus use the following notation and theorems,
which apply regardless of the order of the center (any conditions for these theorems will be stated).
To begin, we note that, as the center is a normal subgroup, the factor group will have subgroups.
By the Correspondence Theorem, these subgroups contain the center, and some of these will be of
order 8. We denote these subgroups, and prove a few theorems about them, below:

Notation Denote the subgroups of order 8 in G containing Z(G) by Gi where i indexes the sub-
group. Also, unless specified z will denote an element of Z(G), and gi will denote a element
of Gi not in Z(G).

Theorem 3.1 The center of Gi contains the center of G, Z(G) ⊂ Z(Gi).
Proof: This is trivial as an element is in the center commutes with every element, and thus
commutes with all of Gi.

Next we state a useful theorem about the product set of two groups, one which we will use
repeatedly:

Theorem 3.2 Let H, K be subgroups of G. Then the subset HK = {hk : h ∈ H, k ∈ K} has
order |HK| = |H||K|/|H ∩K| (Judson, 203).

From this, we see some useful facts about the Gi:

Theorem 3.3 The intersection of two Gi must be a group of order 4.
Proof: Let Gi, Gj be distinct subgroups of order 8 containing the center. Then, by theorem
4.2, |GiGj| = |Gi||Gj|/|Gi ∩ Gj| = 8 ∗ 8/|Gi ∩ Gj| = 64/|Gi ∩ Gj|. Since the intersection of
a subgroup is a subgroup (Judson, 46), the order of Gi ∩ Gj must be either 8,4,2, or 1. if
|Gi ∩ Gj| = 8, then the groups are the same, and for order 1 or 2, we get that |GiGj| is 64
and 32, respectively. This leads to a contradiction, as then GiGj is larger than G. Thus, the
order of the intersection of two distinct Gi is a group of order 4.
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Theorem 3.4 Three distinct Gi that share a common intersection (that will be a group of order
4 by Theorem 4.3) are formed by the cosets of their intersection. In particular Gi = (Gi ∩
Gj) ∪ gi(Gi ∩ Gj), where gi is not in the intersection. If three distinct Gi share a common
intersection, then they contain every element in the group
Proof: To show that this is true, note that both (Gi ∩Gj), gi(Gi ∩Gj) are subsets of Gi, and
since gi is not in the intersection, they are disjoint. Hence there are eight elements in the
union, which equals the number of elements in Gi, so the sets are equal. From this, having
three Gi means we have four distinct cosets (one that is the intersection and three for each
Gi) so these are the number of cosets, and every element is in a coset by Lagrange’s Theorem
(Judson, 81), so every element is in at least one Gi (as every element is in a coset of the
intersection as a subgroup).

Theorem 3.5 Let gi, gj be elements of Gi, Gj with neither of them in Gi ∩Gj. Then gigj is not
in Gi or Gj.
Proof: Without loss of generality, we will show gigj /∈ Gi. For the purposes of contradiction,
assume that for hi ∈ Gi, hi = gigj. Then gj = g−1i hi is in Gi, which would mean gj is in
the intersection of Gi and Gj, which contradicts our assumptions about gj. So gigj is not in
either Gi or Gj.

Theorem 3.6 Let G/Z(G) be abelian. Then the commutator between gi, gj is an element z′ of
the center, gigj = z′gjgi.
Proof: let giZ(G), gjZ(G) ∈ G/Z(G). Then since the factor group is abelian, (giZ(G))(gjZ(G)) =
(gjZ(G))(giZ(G)). Note that when we preform the operation in the factor group, we get
gigjZ(G) = gjgiZ(G), so gigj = z′gjgi for some z′ ∈ Z(G) from the properties of cosets.

4 |Z(G)| = 8

In the case that |Z(G)| = 8, then we form the factor groupG/Z(G), which has order |G/Z(G)| =
|G|/|Z(G)| = 16/8 = 2. Since the factor group is a group of order 2, the factor group is cyclic.
However, we have a theorem about the factor group being cyclic:

Theorem 4.1 If G/Z(G) is cyclic, then G is abelian (Judson, 186).

By theorem 2.1, a group that is abelian has a center equal to the group. If the center equals the
group, then the order of the center is 16 and not 8. Hence we have a contradiction, so no groups
of order 16 have a center of order 8.

5 |Z(G)| = 4

If the order of the center is four, then the order of G/Z(G) is |G/Z(G)| = |G|/|Z(G)| = 16/4 =
4. The only possibilities for the factor group are thus G/Z(G) ∼= Z4 or G/Z(G) ∼= Z2 × Z2. If
G/Z(G) ∼= Z4, then the factor group is cyclic, which as we saw above implies a center of order
sixteen, not four. Hence the factor group must be isomorphic to Z2 × Z2. We note that, in this
case, there are three subgroups of order 2, and by the Correspondence Theorem, there are three
Gi (the mapping from G to G/Z(G) is a 4 to 1 map, hence a subgroup of order 2 in the factor
group is of order 2 ∗ 4 = 8 in G). We also note that by Theorem 3.3, the intersection of two Gi is
the center, as it is in the intersection and a subgroup of order 4.
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We next note that, with |Z(G)| = 4 the only possibilities are that all Gi are abelian, since the
by theorem 3.1, the center of Gi, would have at least four elements in Z(Gi), and not two as with
the non-abelian groups of order 8. Hence Gi are ∼= Z8 , Z4 × Z2, or Z2 × Z2 × Z2. We now note a
fact about commuting two elements

Theorem 5.1 If |Z(G)| = 4, and gi, gj with i 6= j, then they do not commute.
Proof: If gi, gj commute when they are in different Gi, then gi commutes with all elements in
Z(G) (as the center), giZ(G) (as commutes with itself and the center) gjZ(G) (as this is gj
times an element of the center). This means there are at least 12 elements in the centralizer
of gi (the centralizer of gi is the collection of all elements that commute with gi), and since
the centralizer is a subgroup (Judson, 185), the order of the centralizer must divide the order
of the group. So the centralizer is of order 16 and hence the group. Then gi commutes with
all elements, so it is in the center, which contradictions the fact that it is in the center. hence
gi, gj do not commute, so there commutator is a nontrivial element of the center.

We are now ready to classify groups. Since the center is of order 4, it is isomorphic to either Z4 or
Z2 × Z2. We will break these into two cases.

5.1 Z(G) ∼= Z2 × Z2

Since Z(G) ∼= Z2×Z2, we know that each Gi contains a subgroup isomorphic to Z2×Z2. Since
all Gi are abelian , and we know that Z8 contains no subgroup isomorphic to Z2 × Z2, the only
possible isomorphism classes for the three Gi are Z4×Z2 or Z2×Z2. We now have four possibilities;
(5.1.1) all Gi

∼= Z2 × Z2 × Z2, (5.1.2) two Gi
∼= Z2 × Z2 × Z2, (5.1.3) one Gi

∼= Z2 × Z2 × Z2, and
(5.1.4) no Gi

∼= Z2 × Z2 × Z2 (so all ∼= Z4 × Z2). Considering the situations:

5.1.1 G1, G2, G3
∼= Z2 × Z2 × Z2

To investigate the scenario of all Gi
∼= Z2 × Z2 × Z2, we need the following theorem:

Theorem 5.1.1.2 If every nonidentity element in G has order 2, then G is abelian (Judson, 46).

From theorem 3.4, every element is in a Gi. If all Gi
∼= Z2 × Z2 × Z2 then every non-identity

element has order 2 (as every element is in a subgroup with nonidentity elements having order 2),
and from Judson, we see that this implies that the group is abelian, so |Z(G)| = 16 6= 4, so this
leads to a contradiction. Hence, there are no groups with this property.

5.1.2 G1, G2
∼= Z2 × Z2 × Z2, G3

∼= Z4 × Z2

We will now state conditions that we will use over and over again, so we will call them:

Conditions [1] let gi,∈ Gi, gj ∈ Gj be elements with the property that gi, gj /∈ Gi ∩Gj. Let g′

be the commutator between gj, gi (this means gjgi = g′gigj). We note that, for g′ ∈ Z(G)
(gigj)

2 = gi(gjgi)gj = gig
′gig

2
j = g′g2i g

2
j .

Pick an element r ∈ G3, s ∈ G1 with conditions 1 such that |r| = 4 and |s| = 2 (we have these
elements since there is a cyclic subgroup of order 4 in G3 and a subgroup G1

∼= Z2 × Z2 that is
not the center). Let z′ be the commutator between s and r (we will see the reason for calling
these elements r, s shortly). We note that r2 ∈ Z(G), as |r2| = 2 and all elements of order 2 in
G3 are in the center (property of Z4 × Z2). We note that rs ∈ G2, so its order is 2 (theorem 4.4),
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and thus e = (rs)2 = zr2s2 = zr2. Hence z = (r2)−1 = r2, so sr = r2rs = r3s = r−1s. Thus
we can form the subgroup H = {e, r, r2, r3, s, rs, r2s, r3s} ⊂ G. We see that H is a subgroup as
H is closed (using the commuting rule) and has inverses (elements in 〈r〉 have inverses in 〈r〉 and
elements not in 〈r〉 have order 2). If we choose z ∈ Z(G) so z 6= e, r2, then {z, e} = 〈z〉 = K is
a subgroup. We note that H ∩ K = {e}, so |HK| = |H||K|/|H ∩ K|=8*2/1=16, so HK = G,
and since K is a subgroup of the center hk = kh for all k ∈ K,h ∈ H. Hence, G is the direct
internal product of H ∼= D4 and K ∼= Z2, so G ∼= H×K ∼= D4×Z2. This group has representation
G = {rαsβzγ : r4 = s2 = z2 = e, sr = r−1s, zr = rz, zs = sz}.

5.1.3 G1
∼= Z2 × Z2 × Z2, G2, G3

∼= Z4 × Z2

In this case pick elements g2, g3, with conditions [1], which since they are not in the center must
have order 4. Let z′ be the commutator between g3 and g2. we know that the elements squared
are in the center, so let g22 = z2, g

2
3 = z3. We note that g2g3 ∈ G1, so |g2g3| = 2. This means that

e = (g2g3)
2 = z′g22g

2
3 = z′z2z3. We next prove a fact about Z2 × Z2:

Theorem 4.1.3.1 let a, b, c be nonidentity elements in Z2 × Z2. abc = e, if and only if none of
the elements are equal
Proof: (⇐) If c 6= a, c 6= b, and c 6= e, then the only element left is c = ab. Consequently,
abc = cc = c2 = e.
(⇒) We will prove the contrapositive so let two of the elements be equal and we want to
show abc 6= e. Without loss of generality assume a = b. then abc = a2c = c 6= e, so since the
contrapositive is true, the statement is true, so abc = e if and only if a 6= b 6= c

From the above theorem, we see that z′ 6= z2 6= z3, so z′ = z2z3 from the properties of
Z2 × Z2. Thus, we get that g3g2 = (z2z3)g2g3 = z2g2z3g3 = g32g

3
3 = g−12 g−13 . Next, we note

that 〈g2〉 = {e, g2, z2, z2g2} and 〈g3〉 = {e, g3, z3, z3g3}, so 〈g2〉 ∩ 〈g3〉 = {e}. Thus |〈g2〉〈g3〉| =
|〈g2〉||〈g3〉|/|〈g2〉 ∩ 〈g3〉| = 4 ∗ 4/1 = 16. Thus we have 16 distinct products of the form gα2 g

β
3 ,

so group has representation G = {gα2 g
β
3 : g42 = g43 = e, g3g2 = g−12 g−13 } (this is called semidirect

product of Z2 × Z2 and Z4, G = (Z2 × Z2)o Z4).

5.1.4 G1, G2, G3
∼= Z4 × Z2

Grab i ∈ G1, j ∈ G2 with conditions [1], so since they not in the center, so |i| = |j| = 4. Their
squares are in the center (property of Z4 × Z2), so Let i2 = z1, j

2 = z2. We note that ij ∈ G3,
so |ij| = 4 thus let z3 = (ij)2. This tells us that z3 = (ij)2 = ijij = iz′ij2 = z′i2z2 = z′z1z2. by
multiplying both sides by z3z

′, we get z′ = z1z2z3. Since z′ 6= e (see theorem 4.6) we can use the
negation of theorem 4.1.3.1 (if abc 6= e, then at least two of the elements are equal), to state two
possibilities (a) all three of z1, z2, z3 are equal, or (b) two are equal.

Assume all three of z1, z2, z3 are equal
In this case, we note that z′ = z1z2z3 = z31 = z1, so form the set H = {e, i, z1, z1i = i−1, j, z1j =

j−1, ij, z1ij = ji = (ij)−1}. This is a subgroup with the inverse shown (as ij(ji) = ij2i = iz1i =
ii2i = i4 = e), and the subgroup is closed with the commuting rule. Next, grab a z 6= z1, and form
the group {e, z} = 〈z〉 = K. We note that H ∩K = {e}, and |HK| = |H||K|/|H ∩K|=8*2/1=16,
so HK = G. Also, since K is a subgroup of the center, hk = kh for all h ∈ H, k ∈ K. Then G
is the direct internal product of H ∼= Q and K ∼= Z2, so G ∼= H ×K ∼= Q× Z2. This group has
representation G = {iαjβzγ : i2 = j2, i4 = j4 = z2 = e, ji = i−1j, zi = iz, jz = zj}.
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Assume two of z1, z2, z3 are equal
Without loss of generality, assume z2 = z3 (we can do that, as in this case z′ = z1z2z3 = z1,

versus when z1 = z2, then z′ = z1z2z3 = z3 or z1 = z3, in which case z′ = z1z2z3 = z1z3z2 = z2,
so no matter which two of i, j, or ij have their squares equal, we always get the third as the
commutator). In this case, 〈i〉 = {e, i, z1, z1i}, and 〈j〉 = {e, j, z2, z2j}. For these two subgroups
〈i〉 ∩ 〈j〉 = {e}, and |〈i〉||〈j〉| = |〈i〉|〈j〉|/|〈i〉 ∩ 〈j〉| = 4 ∗ 4/1 = 16, so we have sixteen product of
the form iαjβ, and a commuting rule of ji = z′ij = i2ij = i−1j. Thus this group has a represen-
tation G = {iαjβ : i4 = j4 = e, ji = i−1j}. this is called the semidirect product of Z4 and Z4,
G ∼= Z4 o Z4. We now have all groups with Z(G) ∼= Z2 × Z2, shown in the table below:

Name Symbol Representation Center
Direct Product
of D4 and Z2

D4 × Z2 {aαbβcγ : a4 = b2 = c2 = e, ba = a−1b, ca =
ac, cb = bc}

{e, a2, c,
a2c}

Semidirect prod-
uct of Klein Gro-
up and Z4

(Z2×Z2)
oZ4

{aαbβ : a4 = b4 = e, ba = a−1b−1} {e, a2, b2,
a2b2}

Direct Product
of Q and Z2

Q× Z2 {aαbβcγ : a2 = b2, a4 = b4 = c2 = e, ba =
a−1b, ca = ac, cb = bc}

{e, a2, c,
a2c}

Semidirect prod-
uct of Z4 and Z4

Z4 o Z4 {aαbβ : a4 = b4 = e, ba = a−1b, } {e, a2, b2,
a2b2}

Table 3: Non-ablian Groups of Order 16 with Z(G) ∼= Z2 × Z2

5.2 Z(G) ∼= Z4

Since Z(G) ∼= Z4, we know that each Gi contains a subgroup isomorphic to Z4. Since all the
Gi are abelian, and we know that Z2 × Z2 × Z2 has no subgroup isomorphic to Z4, so the only
possible isomorphism classes are Z8 and Z4 × Z2. We now have four possibilities, (5.2.1) all three
Gi
∼= Z4 × Z2 (5.2.2) two Gi

∼= Z4 × Z2, (5.2.3) one Gi
∼= Z4 × Z2, and (5.2.4) no Gi

∼= Z4 × Z2.

5.2.1 G1, G2, G3
∼= Z4 × Z2

Grab g1, g2 with conditions [1], and let their orders be |g1| = |g2| = 2. We note that g1g2 ∈ G3

is not in the center, so it has order 4 or 2. If we take (g1g2)
2 = z′g21g

2
2 = z′. If z′ ∈ Z(G) ∼= Z4,

has order 4, then |gigj| = 8, which would imply G3
∼= Z8 (not this case) so |gigj| = 4, and |z′| = 2.

If we grab a generator z ∈ Z(G), (so z2 = z′ and 〈z〉 = Z(G)) then we see from theorem 3.4
that G1 = Z(G) ∪ g1Z(G), so every element in G1 looks like zαgβ1 (where since |g1| = 2 means
that β = 0 (it is in Z(G)) or β = 1 (it is in g1Z(G))). We next form 〈g2〉 = {e, g2}, and note
G1 ∩ 〈g2〉 = {e}. Thus the group G1〈g2〉 has order |G1〈g2〉| = |G1||〈g2〉|/|G1 ∩ 〈g2〉| = 2 ∗ 8/1 = 16,
so we have sixteen products of the form zαgβ1 g

γ
2 , and a commuting rule g2g1 = z′g1g2 = z2g1g2 so

using this we can write a representation for G as G = {zαgβ1 g
γ
2 : z4 = g21 = g22 = e, g1z = zg1, g2z =

zg2g2g1 = z2g1g2, } (this is the group of Pauli matrices).
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5.2.2 G1,∼= Z8, G2, G3
∼= Z4 × Z2

As before, choose g2, g3 with conditions [1], and let them both be of order 2. We note that,
as before g2g3 ∈ G1 is not in the center, but now g2g3 has order 8. This means that (g1g2)

2 = z′

(from above) has order 4. We note with the following theorem that this is impossible:

Theorem 5.2.2.1 If the commutator between any two elements is in the center, then it must be
an element of order 2 (or e).
Proof: we note that, regardless of whether the Gi’s are ∼= Z4 × Z2 or ∼= Z8 when we square
any element, we get an element of Z(G) (as squaring an element in Z8 puts you in the only
subgroup of order 4, which in this case is the center, and squaring an element in Z4 × Z2

either gives (0, 0) or (2, 0), both of which are in all three subgroups of order 4). If we have
conditions [1] with gi, gj, and taking gjg

2
i = g2i gj. However, using our commutating rule, we

get gjg
2
i = z′gigjgi = z′giz

′gigj = z′2g2i gj and thus g2i gj = z′2g2i gj, and canceling the g2i gj
gives e = z′2, so |z′| = 2 or z′ = e.

We then get a contradiction if the commutator has order 4, so no group of order 16 has this
property.

5.2.3 G1, G2
∼= Z8, G3

∼= Z4 × Z2

Choose g1, g2 with conditions [1]. Since these are not in the subgroup of G2
∼= Z8, of order 4

(which is Z(G)) they have order 8. Call g21 = z, so z ∈ Z(G) and |z| = 4. We note that we can
choose a g2 ∈ G2 so (|g2| = 8) and g22 = z (you can think of g1, g2 as corresponding to 1 mod 8,
in each group and since their intersection is Z(G), squaring them will give 2 mod 8). If we call
g3 = g1g2, and let z′ be the commutator of g2 and g1, then g3 ∈ G3 (theorem 3.5) so |g3| is 4 or
2. We note that g23 = (g1g2)

2 = z′g21g
2
2 = z′z2. We note that if the commutator is of order 4, then

g23 = z or g23 = z3 (depending upon if z′ = z or z′ = z−1) either way, this would mean that |g23| = 4
(z and z3 have orders 4), and thus |g1| = 8 (as opposed to assuming the order of the commutator
is 2, I want to deduce this from the properties of the group, so if I deduce that the commutator is
of order 4, I get a contradiction). This would mean G1

∼= Z8, which is not the case, hence z′ is of
order 2, and from the properties of Z(G) ∼= Z4, z

′ = z2. This means that g23 = z′z2 = z4 = e, so
|g3| = 2 and thus 〈g3〉 = {e, g3} is a subgroup of order 2. and we note that, since 〈g1〉 = G1 that
G1〈g3〉 has order |G1〈g3〉| = |G1|||〈g3〉|/|G1 ∩ 〈g3〉| = 8 ∗ 2/1 = 16, so we have sixteen products of
the form gα1 g

β
2 , and since g3g1 = (g1g2)g1 = g1(g2g1) = g1(z

′g1g2) = z′g1(g1g2) = z′g1g3, we have a
commuting rule g3g1 = z′g1g3 = z2g1g3 = g41g1g3 = g51g3. Our group now has the representation
G = {gα1 g

β
3 : g81 = g23 = e, g3g1 = g51g3} (this is the Isanowa or Modular Group of order 16).

5.2.4 G1, G2, G3
∼= Z8

As before, choose g2, g3 with conditions [1], and with |g2| = 8 = |g3| and picking g2, g3 such
that g22 = z = g23. Again g1 = g2g3 with g1 ∈ G1, (so |g1| = 8), and g21 = (g2g3)

2 = z′z2. Note
that if z′ is of order 2, the |g1| = 2, which contradicts the order, so |z′| = 4. But this contradicts
theorem 4.2.1, so there are no groups with this property.

We have hence considered all cases for Z(G) ∼= Z4, and thus all cases of |Z(G)| = 4. We have
listed the groups of order 16 with Z(G) ∼= Z4 in the table below.
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name symbol representation Center
Group of the
Pauli Matrices

SU(2) {aαbβcγ : a4 = b2 = c2 = e, ba = ab, ca = ac, cb =
a2bc}

{e, a, a2, a3}

Modular or Isan-
owa group of or-
der 16

M16 {aαbβ : a8 = b2 = e, ba = a5b} {e, a2, a4,
a6}

Table 4: Non-abelian groups of order 16 with centers Z4

6 |Z(G)| = 2

When the center is of order 2 (so Z(G) ∼= Z2) then the central factor group has order
|G/Z(G)| = |G|/|Z(G)| = 16/2 = 8, so G/Z(G) is isomorphic to one of the groups of order
8, so we have 5 cases (a) Z8, (b) Z4 × Z2, (c) Z2 × Z2 × Z2, (d) D4, or (e) Q.

(a) assume G/Z(G) ∼= Z8

In this case, the central factor group is cyclic, so this implies that the group is abelian (the-
orem 3.1) which implies Z(G) = G so |Z(G)| = 16, which contradicts that |Z(G)| = 2. Hence
G/Z(G) � Z8.

(b) assume G/Z(G) ∼= Z4 × Z2

We note that Z4 × Z2 has three subgroups, two subgroups isomorphic to Z4 (which has 1 sub-
group ∼= Z2) and one subgroup ∼= Z2 × Z2 (which has 3 subgroups ∼= Z2). By the correspondence
theorem, this means there are 3 subgroups of order 8 that contain Z(G), two of which have one
subgroup of order 4 that contain the center (call these G1, G2), and one subgroup of order 8 that
contains three subgroups of order 4 with the center (call this G3). We then prove the following
theorem:

Theorem 6.1 If |Z(G)| = 2 and Gi contains 1 subgroup of order 4 with the center, then Gi is
either isomorphic to Z8 or Z4 × Z2.
Proof: We know from Theorem 3.1 that the center of Gi contains Z(G). However, from the
properties of the groups of order 8, we see that, for the non-abelian groups (D4 and Q) they
have three subgroups that contain the center, so groups with this property are not abelian.
Likewise, they cannot be isomorphic to Z2 × Z2 × Z2, because every subgroup of order 2 is
contained in three subgroups of order 4, and not one. Furthermore, if Gi

∼= Z4 × Z2 then
it must be in the subgroup ∼= Z2 × Z2, as the two subgroups ∼= Z4 share their subgroup of
order 2. The only two options are consequently Gi

∼= Z8,Z4 × Z2.

Therefore, since G1, G2 has 1 subgroup of order 4 containing the center, they are abelian. We now
prove that this leads to a contradiction:

Theorem 6.2 If G has two Gi that are abelian (could also be isomorphic to Z2 × Z2 × Z2), then
the center has order at least 4.
Proof: Let Gi, Gj be distinct and abelian. We note that GiGj is equal to the group (as
|GiGj| = |Gi||Gj|/|Gi ∩Gj| = 8 ∗ 8/4 = 16) and we note that, since they are abelian, every
element in Gi ∩ Gj commutes with the elements in Gi and Gj. Therefore, if g ∈ Gi ∩ Gj,
then g commutes with every element in G1G2 (g commutes with all g1 ∈ G1, g2 ∈ G2, and
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an arbitrary element in G1G2 is g1g2, thus g(g1g2) = (gg1)g2 = g1gg2 = (g1g2)g). Since it
commutes with every element in the group, it is in the center. This means that every element
is Gi ∩Gj is in the center, and since there are four elements in Gi ∩Gj, there must be four
elements in the center.

Since we have two abelian groups (G1, G2), the center must be of at least order 4, but this would
contradict that the center is of order 2. Hence G/Z(G) � Z4 × Z2.

(c) assume G/Z(G) ∼= Z2 × Z2 × Z2

To begin, we note that since every element in the factor group has order 2, Z(G) = (gZ(G))2 =
g2Z(G), so every element squared is in the center. We note that since the group is not abelian,
there exists 1 element g that does not have g2 = e (theorem 4.1.1.1). Since g2 ∈ Z(G), how-
ever, we note that g2 = z. We note that 〈g〉 = {e, g, g2 = z, g3 = zg} is a subgroup con-
taining the center, so by the correspondence theorem there is a factor group of order 2 in the
center (in this case, 〈gZ(G)〉 = {Z(G), gZ(G)}). We note that this group is contained in the
three subgroups of order 4 (each of the the subgroup of order 2 is contained in 3 subgroups in
G/Z(G) ∼= Z2 × Z2 × Z2). If we call these G1, G2, G3, then we note at least two of these are
nonabelian (if two are abelian it implies a center of order 4, see Theorem 5.2). Without loss of
generality assume G2, G3 are nonabelian. Then we note that if we let g2 ∈ G2, g3 ∈ G3 which
are not in their intersection (which in this case is 〈g〉). then we note that g2g3 ∈ G1 and is not
in 〈g〉. then we note that, since g /∈ Z(G2), Z(G3) (which are of order 2 so equal the center)
when we commute we pick up a z, g2g = zgg2 (same for g3). If we then take (g2g3)g, we see that
(g2g3)g = g2(g3g) = g2(zgg3) = z(g2g)g3 = z(zgg2)g3 = z2g(g2g3) = g(g2g3), so g commutes with
g2g3 ∈ G1, and we note that g commutes with 〈g〉∪ (g2g3)〈g〉, which are eight elements G1 hence it
equals g1, hence g1 ∈ Z(G1), and now the center of G1 has at least three elements (g, e, z) it has to
be abelian. This center has no elements of order 8, as these do not have g2 = z, and Z2 ×Z2 ×Z2

has no elements of order 2, so G1
∼= Z4 × Z2.

We next let g1 ∈ G1, g1 /∈ 〈g〉. If h2 ∈ G2 commutes with g1, then gα1 h
β
2g

γ is an abelian group
with eight elements, as everything commutes with everything else, and has eight elements by two
options for each greek letter (if either an element of order 8, you can use that g21 and/or h22 is
equal to z) then Gi = {gα1 h

β
2z

γ} is an abelian group, we have two abelian groups of order 8, which
implies that |Z(G)| ≥ 4 which contradicts that |Z(G)| = 2. Thus h2 cannot commute with any
elements in G1 that are not in 〈g〉. Thus g2 does not commute with g1, but we note that g1g is not
in 〈g〉 (as then g1 = g−1gn = gn−1 is in 〈g〉). But gg1g2 = g(zg2g1) = z(gg2)g1 = z2g2gg1 = g2(gg1)
has g2 commuting with gg1, which would contradict the fact that it does not commute, which if it
did commute we could construct a second abelian group and thus |Z(G)| ≥ 4, which contradicts
that |Z(G)| = 2.

(d) assume G/Z(G) ∼= Q
We note from the properties of Q that the factor group has three subgroups of order 4, each

with 1 subgroup of order 2. By the Correspondence Theorem, this means there are 3 subgroups of
order 8 in G, each with 1 subgroup of order 4 (call these Gi). By Theorem 6.1, all three of these
are abelian, and since there are 2 abelian Gi, the center must have order 4, contradicting that the
center has order 2. Hence no groups of order 16 have this property.

(e) assume G/Z(G) ∼= D4

In this case we note that the factor group has 1 subgroup of order 4 with 1 subgroup of order 2,
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and 2 subgroups of order 4 with three subgroups of order 2. By the Correspondence Theorem, we
have 1 subgroup of order 8 with 1 subgroup of order 4 containing the center (call this G1 and from
Theorem 5.1, G1

∼= Z8 or Z4×Z2), and two subgroups of order 8 with three subgroups containing
the center (denote these G2, G3). We note that both G2, G3 are nonabelian, as if they were abelian
then by theorem 5.2, Z(G) would have order 4. Before we determine the nature of these subgroups
we need to determine how elements commute. This means finding out the commutator subgroup:

Definition the commutator subgroup, G′, is defined as G′ = 〈ghg−1h−1 : g, h ∈ G〉 (Judson,
202).

Note that Z(G) ⊂ Z(G2), and in these nonabelian groups of order 8, the center is of order
2, hence Z(G) = Z(G2). Also, based on the properties of these groups, the center is contained
in the commutator (for G2

∼= D4, then z = r2 is the nontrivial element of the center, and z =
r2 = srs−1r−1, so z an element of G′. for G2

∼= Q, then z = −1 = i2 is a nontrivial element of
the center, and z = −1 = i2 = iji−1j−1 is in G′). Let Z(G), g′Z(G) be the center of G/Z(G)
(so g′ is equivalent to r2 in D4). If we pick g1Z(G), g2Z(G) in the factor group so they do not
commute, then from the properties of D4, they pick up an element of the center when they commute
g1g2Z(G) = (g1Z(G))(g2Z(G)) = (g′Z(G))(g2Z(G))(g1Z(G)) = g′g1g2Z(G), so g1g2 = g′z0g2g1,
for some z0 in the center, hence g′, zg′ are in the commutator subgroup (as regardless of z0 the fact
that the commutator is a subgroup means we can multiply by its inverse in the center (which is in
the commutator) and get g′, and from this zg′). Note that these four elements form a subgroup,
and we have no other generators for G′ (assume gh = chg with c in the commutator. Then
gZ(G)hZ(G) = ghZ(G) = chgZ(G) = cZ(G)hZ(G)gZ(G) and in the factor group, we either pick
up a g′Z(G) = {g′, zg′ or Z(G) = {e, z}, so commuting picks up one of these four elements, which
are the four elements in the center). This we get no more generators, thus G′ = {e, z, g′, zg′} is
the commutator. We note that G′ corresponds to the center of the factor group, and the center is
contained in the four subgroups of order 4, hence by the correspondence theorem this subgroup is in
all three subgroups of order 8 containing the center (G′ ⊂ G1, G2, G3), and note that |Gi∩Gj| = 4,
so the intersection of two Gi is G′.
We now need to determine the isomorphism classes of G1, G2G3. We will determine the structure
of G1 (the abelian one).

Theorem 6.3 if G/Z(G) ∼= D4 then one of the Gi is cyclic
Proof: We already know that G1

∼= Z8 or Z4 × Z2, so we will do a proof by contradiction.
Assume G1

∼= Z4 × Z2. Note from theorem 6.1 that this means that the one subgroup of
order 4 containing the center is isomorphic to Z2 × Z2. We know G2, G3 are nonabelian, so
they are isomorphic to Q or D4. However, neither are isomorphic Q, as the only subgroups
of order 4 in Q are cyclic, so this would mean that G′ = G1 ∩ Gi

∼= Z4 is cyclic, which
contradicts that it is Z2×Z2. This leaves both G2, G3

∼= D4. since there are five elements of
order 2 in D4, we can pick g2 such that |g2| = 2. We note that, for g1 ∈ G1, (and commutator
g′ between g2 and g1). Then g1 = g22g1 = g2g

′g1g2 = zg′g2g1g2 = zg′g′g1g
2
2 = zg′2g1 (we note

that g′, g2 ∈ G2 commute with an element of center from the properties of groups of order
8). Canceling out g1 gives e = g′2z and thus g′2 = z−1 = z (as inverse of element of order 2
is itself) thus |g′| = 4. But this contradicts that the group of order 4 containing the center
is ∼= Z4 × Z2, hence this is a contradiction, so there is no way for G1

∼= Z4 × Z2.

Now that we know G1
∼= Z8, we have three scenarios, (5.0.1) G2, G3

∼= Q, (5.0.2) G2
∼= Q, G3

∼= D4,
or (5.0.3) G2, G3

∼= D4.
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5.0.1 G2, G3
∼= Q

Grab g1, g2 with conditions [1]. Note that, since G1
∼= Z8 shares a subgroup of order 4 with G2

∼=
Q, we have (g41 = g′2 = g22 = z). Also, g1g2 ∈ G3, so z = (g1g2)

2 = g1g2g1g2 = g1g
′g1g2g2 = g′g21z, so

e = g′g21, so g′ = (g21)−1 = g−21 = g61. If we take 〈g1〉 = G1, and 〈g2〉 = {e, g2, z, zg2} (so G1 ∩ 〈g2〉 =
{e, z}), and form G1〈g2〉, then this has order |G1〈g2〉| = ||G2||〈g2〉|/|G1 ∩ 〈g2〉| = 8 ∗ 4/2 = 16, so
there are 16 elements of the form gα1 g

β
2 and commuting rule g2g1 = g′g1g2 = g61g1g2 = g71g2 = g−11 g2.

So our group has the representation G = {gα1 g
β
2 : g41 = g22, g

8
1 = g42 = e, g2g1 = g−11 g2}, This is the

generalized quaternions, (also dicyclic group of degree 4, Dic4).

5.0.2 G2
∼= D4, G3

∼= Q

Grab g1, g3 with conditions [1], and note that g1g3 ∈ G2
∼= D4 is not in the cyclic subgroup

of order 4, so has order 2, (g1g3)
2 = e. This means that e = (g1g3)

2 = g1g3g1g3 = g1g
′g1g

2
3 =

g21g
′(g41) = g′g61, so g′ = (g61)−1 = g−61 = g21 If we let g2 = g1g3, then to determine commutator

between g2 and g1, note g2g1 = g1g3g1 = g1g
′g1g3 = g21g1(g1g3) = g31g2, and we note that since

|g2| = 2, 〈g2〉 = {e, g2}, and 〈g1〉 = G1, and |G1〈g2〉| = |G1||〈g2〉|/|G1 ∩ 〈g2〉| = 8 ∗ 2/1 = 16,
so sixteen elements of the form gα1 g

β
2 , so using the orders and commuting rules we get a group

representation of G = {gα1 g
β
2 : g81 = g22 = e, g2g1 = g31g2}. This is the semidihedral group of degree

2, SD2.

5.0.3 G2, G3
∼= D4

Grab g1 ∈ G1, g2 ∈ G2 with conditions [2]. Let g′ be the commutator between them
g2g1 = g′g1g2, and |g2| = 2. Since g1g2 ∈ G3

∼= D4, and not in cyclic group of order 4, |g1g2| = 2.
We note that e = (g1g2)

2 = g1g2g1g2 = g1g
′g1g

2
2 = g′g21, so g′ = (g21)−1 = g61 Next, we note that

〈g1〉 = G1, and 〈g2〉 = {e, g2}, so |G1〈g2〉| = |G1||〈g2〉|/|G1 ∩ 〈g2〉| = 8 ∗ 2/1 = 16, so sixteen
elements of the form gα1 g

β
2 with commuting rule g2g1 = g′g1g2 = g61g1g2 = g71g2 = g−11 g2. This gives

a representation of G = {gα1 g
β
2 : g81 = g22 = e, g2g1 = g−11 g2} (this is the dihedral group of degree 8,

D8.
Thus we have determined the 14 groups of order 16, which are all collected in a table in the

appendix

name symbol representation Center
Dicyclic Group
of Degree 4

Dic4 {aαbβ : a4 = b2a8 = b4 = e, ba = a−1b} {e, a4}

Semidihedral gr-
oup of degree 2

SD2 {aαbβ : a8 = b2 = e, ba = a3b} {e, a4}

Dihedral group
of degree 8

D8 {aαbβ : a8 = b2 = e, ba = a−1b} {e, a4}

Table 5: Groups of order 16 with Z(G) ∼= Z2

Thus we have now determined all 14 groups of order 16, which are collected in the appendix.
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Appendix 1: The representations of the groups of order 16

name symbol representation Center
Integers mod 16 Z16 {aα : a16 = e} Abelian
Direct Product
of Z8 and Z2

Z8 × Z2 {aαbβ : a8 = b2 = e, ba = ab} Abelian

Direct Product
of Z4 and Z4

Z4 × Z4 {aαbβ : a4 = b4 = e, ba = ab} Abelian

Direct Product
of Z4, Z2 and Z2

Z4 × Z2

×Z2

{aαbβcγ : a4 = b2 = c2 = e, ba = ab, ca = ac, cb =
bc}

Abelian

Direct product
of Z2, Z2, Z2

and Z2

Z2×Z2×
Z2 × Z2

{aαbβcγdδ : a2 = b2 = c2 = d2 = e, ba = ab, ca =
ac, da = ad, cb = bc, db = bd, dc = cd}

Abelian

Direct Product
of D4 and Z2

D4 × Z2 {aαbβcγ : a4 = b2 = c2 = e, ba = a−1b, ca =
ac, cb = bc}

{e, a2, c,
a2c} ∼= Z2

×Z2

Semidirect prod-
uct of Klein Gro-
up and Z4

(Z2×Z2)
oZ4

{aαbβ : a4 = b4 = e, ba = a−1b−1} {e, a2, b2,
a2b2} ∼= Z2

×Z2

Direct Product
of Q and Z2

Q× Z2 {aαbβcγ : a2 = b2, a4 = b4 = c2 = e, ba =
a−1b, ca = ac, cb = bc}

{e, a2, c,
a2c} ∼= Z2

×Z2

Semidirect prod-
uct of Z4 and Z4

Z4 o Z4 {aαbβ : a4 = b4 = e, ba = a−1b, } {e, a2, b2,
a2b2} ∼= Z2

×Z2

Group of the
Pauli Matrices

SU(2) {aαbβcγ : a4 = b2 = c2 = e, ba = ab, ca = ac, cb =
a2bc}

{e, a, a2, a3}
∼= Z4

Modular or Isan-
owa group of or-
der 16

M16 {aαbβ : a8 = b2 = e, ba = a5b} {e, a2, a4,
a6} ∼= Z4

Dicyclic Group
of Degree 4

Dic4 {aαbβ : a4 = b2a8 = b4 = e, ba = a−1b} {e, a4} ∼=
Z2

Semidihedral gr-
oup of degree 2

SD2 {aαbβ : a8 = b2 = e, ba = a3b} {e, a4} ∼=
Z2

Dihedral group
of degree 8

D8 {aαbβ : a8 = b2 = e, ba = a−1b} {e, a4} ∼=
Z2
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