Math 290 Name: i(&tﬁ Dr. Beezer
Exam 4 ‘ Spring 2012
Chapter VS

Show olf of your work and expladn your answers fully, There is a total of 100 possible points,
Use Sage only to row-reduce matrices or to solve systems of equations, and be sure to detail your input aad output.

1. Determine if the set R below is a linearly independent set in P, the vector space of polynomials of degree at
most two. (15 points)
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2. Find a spanning set for the subspace Y of Mag. {15 points)
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3. For the matrix A below, compute the rank, nullity and the dimension of the column space. (5 points)
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4. Consider the subspace W of P (the vector space of all polynomialy of degree at most 3), and the four elements
u, v. w, ¥y of W. You may assume the following: W is a subspace, all four elements below are in W {except
for when you do part (&)}, and B = {u, v} is a basis of W, (35 points)
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(a) Verify that one of u, v, w, y is an element of W (your choice, just one)
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(b} Does the set T = {w} span W7 Why or why not?
R = basd =D gdwa(id= 2
VT\=1 2 2 + Gddileda =D T lovs wgh wan
(c) Ts the set R =

{u, v, w} a linearly independent subset of W? Why or why not?
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{d) Does the set T' = {u, w} span W? Why or why not?
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5. Suppose that ¥ is a vector space. Prove that the zero vector of V' is unique. {15 points)

Lok x"{; theve  were o 300 veokad 3*’?& Oi 4 0,

Q= Qi+ 0o Yewwr 0, &4 W Vet

= (], Deccne O, Bs ¢ Mo vestor

6. Suppose that A is an m x m nonsingular matrix and that S = {vy, va, va, ..., v} is a linearly independent
subset of C™. Prove that T = {A4vy, Avg, ..., Av,} is a linearly independent subset of C™. (15 points)
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