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Introduction

Algebraic number theory is a rich and diverse subfield of abstract algebra and number theory,
applying the concepts of number fields and algebraic numbers to number theory to improve
upon applications such as prime factorization and primality testing. In this paper, we will
begin with an overview of algebraic number fields and algebraic numbers. We will then move
into some important results of algebraic number theory, focusing on the quadratic, or Gauss
reciprocity law.

Algebraic Number Fields

We begin with a few definitions. [1]

Definition 1. An algebraic number field, or number field is a finite field extension of the
field of rationals Q.

Definition 2. A number α ∈ C is an algebraic number if there exists p(x) ∈ Q[x] such that
p(α) = 0. A number α ∈ C is an algebraic integer if there exists p(x) ∈ Z[x] such that
p(α) = 0. Generalizing, a number α ∈ F is said to be algebraic over F if there exists
q(x) ∈ F [x] such that q(α) = 0

Definition 3. A polynomial f(x) ∈ F [x] is said to be irreducible if there does not exist
g(x), h(x) ∈ F [x] such that f(x) = g(x)h(x).

With these in hand, we can present the following theorem, whose proof relies on an important
result from abstract algebra.
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Theorem 1. Let F be a number field. If α is algebraic over F , then there exists
mα,F (x) ∈ F [x], m unique and minimal, called the minimal polynomial of α over F . If
p(α) = 0 for some irreducible, monic p(x) ∈ F [x], then p = mα,F . Every polynomial
q(x) ∈ F [x] where q(α) = 0 must be divisible by mα,F (x).

Proof. Let g(x) ∈ F [x] be a minimal polynomial of α, and let h(x) ∈ F [x] such that h(α) = 0.
From abstract algebra, we know that if we have f(x), g(x) ∈ F [x], g(x) 6= 0, then
∃q(x), r(x) ∈ F [x] with q and r unique, such that

f(x) = q(x)g(x) + r(x)

where either of the following are true:

0 ≤ deg(r) < deg(g)

or
r(x) = 0.

In this case, there exists q(x), r(x) ∈ F [x] such that

h(x) = q(x)g(x) + r(x).

We know that g(α) = h(α) = 0 so r(α) = 0, thus g is not minimal, and therefore r(x) = 0. It
follows that g(x) divides h(x). Allowing f(x) ∈ F [x] to be any other minimal polynomial of α
permits us to repeat the above argument to yield that g(x) divides f(x). This implies that
f(x) = cg(x), c ∈ F . Since f(x) is monic, c = 1, and thus f(x) = g(x). Denote this
polynomial as mα,F (x).[1]
�

Corollary 1. An irreducible polynomial over a number field has no repeated roots in C.

Proof. Let f(x) ∈ F [x] be irreducible and have two identical roots, α. Then

f(x) = (x− α)2g(x)

for g(x) ∈ F [x]. By Theorem 1, mα,F (x) divides f(x), thus f(x) = amα,F (x) for a ∈ F .
Differentiating,

f ′(x) = (x− α)g(x) + (x− α)2g′(x).

It follows that f ′(α) = 0. But by Theorem 1, mα,F (x) divides f ′(x), which contradicts the
fact that deg(f ′)<deg(f). Thus f can have no repeated roots.
�

We now move to some notation. Let Q denote the field of all algebraic numbers in C. Let A
denote all algebraic integers in Q. We need the following facilities in order to show some
important properties of algebraic numbers.
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Definition 4. An injective map f : G→ F of sets G and F is called a monomorphism.

Definition 5. Let F be a number field. Then an embedding θ of F in C is a ring
monomorphism.

We present the following theorem regarding embeddings without proof.

Theorem 2. If F is a number field of degree d, then there exists exactly d embeddings θj for
j = 1, 2, 3 . . . , d of F in C.

Definition 6. Let F be an number field of degree d, and let θj be the set of embeddings of F
in C. The trace of α from F is

TF (α) =
d∑
j=1

θj(α).

The norm of α from F is

NF (α) =
d∏
j=1

θj(α).

The following theorem illuminates an important property of algebraic integers.

Theorem 3. Let α ∈ Q, and let mα,Q be the minimal polynomial of α over Q. Then α ∈ A
iff mα,Q ∈ Z[x].

Proof. ⇒ Let mα,Q ∈ Q[x] and α ∈ A. Let f(x) ∈ Z[x] such that f is monic and of least
degree and f(α) = 0. By theorem 1, mα,Q(x) divides f(x) in Q[x]. But since mα,Q(x) is
monic, by Gauss’ Lemma from abstract algebra, mα,Q(x) must be in Z[x], so f(x) = mα,Q(x).
⇐ Let mα,Q(x) ∈ Z[x]. Then by definition α ∈ A.
�

We will now give a necessary definition in order to motivate an important theorem about the
factorization of algebraic integers.

Definition 7. Let F be a field. Then the intersection F ∩ A is a ring called the ring of
algebraic integers in F , denoted as OF .

Theorem 4. Let F be a number field. Then any nonzero α ∈ OF can be factored into a
product of irreducible elements. Furthermore, every nonzero element α ∈ OF has a unique
factorization into irreducibles iff every irreducible element of OF is prime.
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A Reciprocity Law

We shall introduce notations and definitions [3] conducive to the Gauss reciprocity law,
motivated by the congruence relation:

xn ≡ a (mod p)

with n ∈ N, p prime, and a ∈ Z. We are looking for solutions x ∈ Z.

Definition 8. If m, n ∈ N and a ∈ Z with a and m relatively prime and there exists x ∈ Z
such that

xn ≡ a (modm),

then x is called the nth power residue modulo m.

We will examine the case n = 2, which will lead us to the Gauss reciprocity law. In this case,
when there exists such an x, then we say that a is a quadratic residue of p, or a R p.
Otherwise, we say that a is a non− residue of p, or a N p.

Euler’s Criterion [4] Let p be an odd prime and a ∈ Z with a and p relatively prime. Then
a is a quadratic residue of p iff a(p−1)/2 ≡ 1 (mod p).

Definition 9. Let
(
a
p

)
, called the Legendre′s symbol, be defined as follows(

a

p

)
= +1, if aR p

(
a

p

)
= −1, if aN p

We can draw a parallel to these definitions to finite abelian group homomorphisms with a
theorem to follow shortly.[2]

Definition 10. Let G be a finite abelian group. A homomorphism X : G→ C× is called a
character. The set of all characters of G is denoted Ĝ. The order of G is denoted as n. The
Identity of Ĝ is denoted as ê.

Theorem 5. ∑
x∈G

X(x) = n, whenX = ê

or ∑
x∈G

X(x) = 0, whenX 6= ê
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Proof The proof is trivial when X = ê since the identity character maps to 1. Summing over
n elements produces a sum of n. Consider X 6= ê. Let x0 ∈ G such that X(x0) 6= 1. Let
S =

∑
x∈GX(x). Then S =

∑
x∈GX(x) =

∑
x∈GX(x0x) =

∑
x∈GX(x0)X(x) = X(x0)S.

Thus (1−X(x0))S = 0 which implies that S = 0 since X(x0) 6= 1.�

We will now present Legendre’s Symbol from the algebraic perspective.
Definition 11. Let G = (Z/pZ)×. The unique character of order 2 in Ĝ is called the
Legendre character, denoted as λp.

Uniqueness of the Legendre character is established with the following from abstract algebra

Theorem 6. Let G be a cyclic group of order m. Then there is a one-to-one correspondence
between the subgroups of G and the divisors of m.

Since (Z/pZ)× has order p− 1, it has a subgroup of order 2, and only one of order 2.

There are several parallels between Legendre characters and Legendre symbols. They are in
fact identical as we will soon see. Here we present Euler’s Criterion for Legendre characters:

Theorem 7. Let p be and odd prime. Let a ∈ Z such that p does not divide a, then

λp(a) ≡ a(p−1)/2 (mod p).

We can now draw the rigorous connection between the Legendre symbol and the Legendre
character, which will allow us to proceed to the Gauss reciprocity law.

Theorem 8. Euler’s Criterion Let p be an odd prime. Let a ∈ Z such that p does not
divide a. Then for a primitive root modulo p, r,

λp(a) = (−1)indra

from which must follow λp(a) = 1 iff there exists an x ∈ Z such that x2 ≡ a (mod p).

Proof. Observing the map a→ (−1)indra, we can see that it is a homomorphism between G
and C×. Thus it is a character by definition. Since indr(r) = 1, it follows that a maps to -1,
and thus the map is of order 2. Since it was established that any character of order 2 is
unique, λp(a) = (−1)indra. The second part of the theorem follows from the definition of
indra.�

Thus the Legendre symbol
(
a
p

)
must be identical to λp(a), which of course affords us the

presentation of the Gauss reciprocity law

Theorem 9. Gauss Reciprocity Law For odd primes p, q,

λp(q)λq(p) = (−1)
1
4
(p−1)(q−1)
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Lemma 1.
λp(−1) = (−1)(p−1)/2.

Proof. From Theorem 7, let a = 1. Then λp(−1) ≡ (−1)(p−1)/2 (mod p). But both sides of this
equation are ±1 and p is an odd prime, equality must follow.�

Definition 12. Let p be an odd prime and let z = e2πi/p. For a ∈ Z, let τa denote∑
x∈Z/pZ×

λp(x)zax,

called the Gauss sum. τ denotes τ1.

We shall extend λp to Z/pZ by setting λp(0) = 0.

Lemma 2. For a ∈ Z, τa = λp(a)τ .

Lemma 3. Let p̂ denote (−1)(p−1)/2p. Then λq(p̂) = (−1)(q−1)(p−1)/4λq(p).

Proof. Using Lemma 1, we can see that

λq(p̂) = λq((−1)(p−1)/2p)

= (λq(−1))(p−1)/2λq(p)

= (−1)(q−1)(p−1)/4λq(p)

�

Lemma 4. For odd prime p that does not divide a, then τ 2a = p̂

With the preceding lemmas, we are able to prove the Gauss Reciprocity Law. [2]

Proof of Theorem 9. From Lemma 4 and Euler’s Criterion, we see that

τ q−1 = (τ 2)q−1/2

= p̂(q−1)/2

≡ λqp̂ (mod q)

Thus
τq ≡ λq(p̂)τ (mod q)
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Utilizing Freshman’s Dream, we can deduce the following

τ q =

 ∑
x∈Z/pZ

λp(x)zx

q

≡
∑

x∈Z/pZ

λp(x)qzxq (mod q)

=
∑

x∈Z/pZ

λp(x)zxq

which is τq (mod q). By Lemma 2, this is equal to λp(q)τ . From the above steps, this again is
equal to λq(p̂)τ (mod q) Thus, multiplying the last equality by τ , we obtain

λp(q)p̂ ≡ λq(p̂) (mod q)

which leads us to
λp(q) = λq(p̂)

which results in the Gauss reciprocity law by Lemma 3.�

Conclusion

In summary, using the tools gained via abstract algebra, we are able to take on a different
field of mathematics, extending what the reader might already be familiar with known as
elementary number theory. We created an abstract algebra analogue to a familiar theorem,
and shed more light on its properties.
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