## Chapter 1

If $a$ and $b$ are integers, then we know there exist integers $r$ and $s$ so that $r a+s b=\operatorname{gcd}(a, b)$. Prove that the numbers $r$ and $s$ are not unique by showing that there are infinitely many pairs of integers, $(r, s)$, such that $r a+s b=\operatorname{gcd}(a, b)$.

## Chapter 2

Compute the centers of some small (nonabelian) groups.
For certain elements of a (nonabelian) group, compute the centralizer.
For certain subgroups of a (nonabelian) group, compute the normalizer.
When is the centralizer of an element the trivial subgroup? When is it not the trivial subgroup?
Suppose $G$ is a group and $g \in G$. Show that $\langle g\rangle=\left\{g^{m} \mid m \in \mathbb{Z}\right\}$ is a subgroup of the centralizer $C(g)$.

Suppose that $H$ is a subgroup of $G$. Choose $g \in G$ and define $K_{g}=\left\{g h g^{-1} \mid h \in H\right\}$. Prove that $K_{g}$ is a subgroup of $G$. Describe $K_{g}$ when $g \in H$. Describe $K_{g}$ when $H$ is abelian. Describe $K_{g}$ when $G$ is abelian.

## Chapter 5

The set of left cosets of the subgroup $H$ in the group $G$ forms a partition. Therefore, there is an associated equivalence relation defined on the set $G$. Describe this equivalence relation without using cosets in your final definition.

## Chapter 8

Find a counterexample to the following assertion.
If $K$ is a subgroup of $G_{1} \times G_{2}$, then $K=H_{1} \times H_{2}$ where $H_{1}$ is a subgroup of $G_{1}$ and $H_{2}$ is a subgroup of $G_{2}$. (So the converse of problem 52 is false.)

## Group of Units Revealed

Definition When $s \mid n$, define $U_{s}(n)=\{m \in U(n) \mid m(\bmod s)=1\}$.

Fact If $m$ and $n$ are relatively prime, then $U_{n}(m n)$ is a subgroup of $U(m n)$, and $U_{n}(m n) \simeq U(m)$.

Fact If $m$ and $n$ are relatively prime, then $U(m n)$ is isomorphic to $U(m) \times U(n)$.

Proof Define $\phi: U(m n) \rightarrow U(m) \times U(n)$ by

$$
\phi(x)=\left(\begin{array}{ll}
x & \bmod m, x \\
\bmod n
\end{array}\right)
$$

Then show $\phi$ is an isomorphism.

Fact $U(2) \simeq\{0\}, U(4) \simeq \mathbb{Z}_{2}, U\left(2^{m}\right) \simeq \mathbb{Z}_{2} \times \mathbb{Z}_{2^{m-2}}$. For a prime $p>2, U\left(p^{m}\right) \simeq \mathbb{Z}_{p^{m}-p^{m-1}}$.

Example $\quad U(36)=U\left(2^{2} 3^{2}\right) \simeq U(4) \times U(9) \simeq \mathbb{Z}_{2} \times \mathbb{Z}_{6}$
As an internal direct product, use subgroups $U_{9}(36)$ and $U_{4}(36)$.

Problems $\quad$ Describe $U(72), U(105)$ and $U(1350)$.

## Chapter 9

Without doing the necessary computations, argue that $\{(),(12)(34),(13)(24),(14)(23)\}$ is a normal subgroup of $S_{4}$. (Recall Problem 4.30)

Suppose that $G$ is a group and $H$ and $K$ are normal subgroups of G, such that

1. $G=H K=\{h k \mid h \in H, k \in K\}$
2. $H \cap K=\{e\}$

Prove that $G$ is an internal direct product of $H$ and $K$.

## Chapter 11

$H=\{1,22,27,29,36,43,48,55,62,64,69,90\}$ is a subgroup of $U(91)$. Determine a group that is isomorphic to $H$ and that is written as an external direct product of cyclic groups.

The group $G=U(63767)$ has order $\phi(63767)=52800$. In this problem you will build a subgroup of order 80 isomorphic to $\mathbb{Z}_{8} \times \mathbb{Z}_{10}$.
(a) $52800=2^{6} \cdot 3 \cdot 5^{2} \cdot 11$. So we know $G$ can be written as a product of subgroups of orders $2^{6}, 3,5^{2}, 11$, say $H_{64}, H_{3}, H_{25}, H_{11}$. Compute each of these subgroups. For example, $H_{25}=$ $\left\{x \in G \mid x^{25}=1\right\}$. As a check, $H_{3}=\{1,10286,12343\}$.
(b) From information above, we can determine the eventual structure of $G$. We have $63767=$ $11^{2} \cdot 17 \cdot 31$, so

$$
\begin{aligned}
G & \simeq \mathbb{Z}_{\left(11^{2}-11\right)} \times \mathbb{Z}_{16} \times \mathbb{Z}_{30} \\
& \simeq \mathbb{Z}_{110} \times \mathbb{Z}_{16} \times \mathbb{Z}_{30} \\
& \simeq \mathbb{Z}_{2} \times \mathbb{Z}_{5} \times \mathbb{Z}_{11} \times \mathbb{Z}_{16} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5} \\
& \simeq \mathbb{Z}_{16} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5} \times \mathbb{Z}_{5} \times \mathbb{Z}_{11}
\end{aligned}
$$

So in particular, we know in advance the structure of each of the $p$-groups:

$$
H_{64} \simeq \mathbb{Z}_{16} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \quad H_{3} \simeq \mathbb{Z}_{3} \quad H_{25} \simeq \mathbb{Z}_{5} \times \mathbb{Z}_{5} \quad H_{11} \simeq \mathbb{Z}_{11}
$$

From this, explain how you know $G$ has a subgroup of order 80 isomorphic to $\mathbb{Z}_{8} \times \mathbb{Z}_{2} \times \mathbb{Z}_{5} \simeq \mathbb{Z}_{8} \times \mathbb{Z}_{10}$.
(c) Construct the group described in part (b).

