Chapter 1

If a and b are integers, then we know there exist integers r and s so that ra + sb = gcd(a, b). Prove that the numbers r and s are not unique by showing that there are infinitely many pairs of integers, (r, s), such that ra + sb = gcd(a, b).

Chapter 2

Compute the centers of some small (nonabelian) groups.

For certain elements of a (nonabelian) group, compute the centralizer.

For certain subgroups of a (nonabelian) group, compute the normalizer.

When is the centralizer of an element the trivial subgroup? When is it not the trivial subgroup?

Suppose G is a group and $g \in G$. Show that $\langle g \rangle = \{g^m \mid m \in \mathbb{Z}\}$ is a subgroup of the centralizer C(g).

Suppose that H is a subgroup of G. Choose $g \in G$ and define $K_g = \{ghg^{-1} \mid h \in H\}$. Prove that K_g is a subgroup of G. Describe K_g when $g \in H$. Describe K_g when H is abelian. Describe K_g when G is abelian.

Chapter 5

The set of left cosets of the subgroup H in the group G forms a partition. Therefore, there is an associated equivalence relation defined on the set G. Describe this equivalence relation without using cosets in your final definition.

Chapter 8

Find a counterexample to the following assertion.

If K is a subgroup of $G_1 \times G_2$, then $K = H_1 \times H_2$ where H_1 is a subgroup of G_1 and H_2 is a subgroup of G_2 . (So the converse of problem 52 is false.)

Group of Units Revealed

Definition When s|n, define $U_s(n) = \{m \in U(n) \mid m \pmod{s} = 1\}$.

Fact If *m* and *n* are relatively prime, then $U_n(mn)$ is a subgroup of U(mn), and $U_n(mn) \simeq U(m)$.

Fact If m and n are relatively prime, then U(mn) is isomorphic to $U(m) \times U(n)$.

Proof Define $\phi: U(mn) \to U(m) \times U(n)$ by

 $\phi(x) = (x \mod m, x \mod n)$

Then show ϕ is an isomorphism.

Fact $U(2) \simeq \{0\}, U(4) \simeq \mathbb{Z}_2, U(2^m) \simeq \mathbb{Z}_2 \times \mathbb{Z}_{2^{m-2}}$. For a prime $p > 2, U(p^m) \simeq \mathbb{Z}_{p^m - p^{m-1}}$.

Example $U(36) = U(2^23^2) \simeq U(4) \times U(9) \simeq \mathbb{Z}_2 \times \mathbb{Z}_6$ As an internal direct product, use subgroups $U_9(36)$ and $U_4(36)$.

Problems Describe U(72), U(105) and U(1350).

Chapter 9

Without doing the necessary computations, argue that $\{(), (12)(34), (13)(24), (14)(23)\}$ is a normal subgroup of S_4 . (Recall Problem 4.30)

Suppose that G is a group and H and K are *normal* subgroups of G, such that

1.
$$G = HK = \{hk \mid h \in H, k \in K\}$$

2.
$$H \cap K = \{e\}$$

Prove that G is an internal direct product of H and K.

Chapter 11

 $H = \{1, 22, 27, 29, 36, 43, 48, 55, 62, 64, 69, 90\}$ is a subgroup of U(91). Determine a group that is isomorphic to H and that is written as an external direct product of cyclic groups.

The group $G = U(63\,767)$ has order $\phi(63\,767) = 52\,800$. In this problem you will build a subgroup of order 80 isomorphic to $\mathbb{Z}_8 \times \mathbb{Z}_{10}$.

(a) $52800 = 2^6 \cdot 3 \cdot 5^2 \cdot 11$. So we know *G* can be written as a product of subgroups of orders 2^6 , 3, 5^2 , 11, say H_{64} , H_3 , H_{25} , H_{11} . Compute each of these subgroups. For example, $H_{25} = \{x \in G \mid x^{25} = 1\}$. As a check, $H_3 = \{1, 10286, 12343\}$.

(b) From information above, we can determine the eventual structure of G. We have $63767 = 11^2 \cdot 17 \cdot 31$, so

$$G \simeq \mathbb{Z}_{(11^2 - 11)} \times \mathbb{Z}_{16} \times \mathbb{Z}_{30}$$

$$\simeq \mathbb{Z}_{110} \times \mathbb{Z}_{16} \times \mathbb{Z}_{30}$$

$$\simeq \mathbb{Z}_2 \times \mathbb{Z}_5 \times \mathbb{Z}_{11} \times \mathbb{Z}_{16} \times \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_5$$

$$\simeq \mathbb{Z}_{16} \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_5 \times \mathbb{Z}_5 \times \mathbb{Z}_{11}$$

So in particular, we know in advance the structure of each of the *p*-groups:

$$H_{64} \simeq \mathbb{Z}_{16} \times \mathbb{Z}_2 \times \mathbb{Z}_2 \qquad \qquad H_3 \simeq \mathbb{Z}_3 \qquad \qquad H_{25} \simeq \mathbb{Z}_5 \times \mathbb{Z}_5 \qquad \qquad H_{11} \simeq \mathbb{Z}_{11}$$

From this, explain how you know G has a subgroup of order 80 isomorphic to $\mathbb{Z}_8 \times \mathbb{Z}_2 \times \mathbb{Z}_5 \simeq \mathbb{Z}_8 \times \mathbb{Z}_{10}$. (c) Construct the group described in part (b).