Show all of your work and explain your answers fully. There is a total of 90 possible points. If you use a calculator or software package on a problem be sure to write down both the input and output.

1. Prove that the set $C=\left\{2+x+3 x^{2}, 1-2 x-x^{2},-3+x+2 x^{2}\right\}$ is a basis of P_{2}, the vector space of polynomials with degree at most 2. (20 points)

Solution: With an application of Theorem G, we can save a bit of work. Lets first establish that C is a linearly independent set, by starting with a relation of linear dependence (Definition RLD),

$$
\begin{aligned}
\mathbf{0} & =0+0 x+0 x^{2} \\
& =a_{1}\left(2+x+3 x^{2}\right)+a_{2}\left(1-2 x-x^{2}\right)+a_{3}\left(-3+x+2 x^{2}\right) \\
& =\left(2 a_{1}+a_{2}-3 a_{3}\right)+\left(a_{1}-2 a_{2}+a_{3}\right) x+\left(3 a_{1}-a_{2}+2 a_{3}\right) x^{2}
\end{aligned}
$$

The definition of equality in P_{2} allows us to equate coefficients, which leads to a homogeneous system of three equations in the unknowns a_{1}, a_{2}, a_{3}, with coefficient matrix

$$
A=\left[\begin{array}{ccc}
2 & 1 & -3 \\
1 & -2 & 1 \\
3 & -1 & 2
\end{array}\right]
$$

Check that A row-reduces to the identity matrix I_{3} and so by Theorem NMRRI is a nonsingular matrix. Then by Definition NM, the only solution to the homogeneous system is $a_{1}=a_{2}=a_{3}=0$. By Definition LI, C is linearly independent.
We know by Theorem DP that P_{2} has dimension 3. Because C is a set of size 3, Theorem G tells us that C is a basis of P_{2}, sparing us the necessity of checking that C spans P_{2}.
2. Prove that D is a spanning set for the subspace X of M_{22}. (20 points)

$$
D=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 6
\end{array}\right],\left[\begin{array}{cc}
0 & 1 \\
0 & -2
\end{array}\right],\left[\begin{array}{cc}
0 & 0 \\
1 & 3
\end{array}\right]\right\} \quad X=\left\{\left.\left[\begin{array}{cc}
a & b \\
c & d
\end{array}\right] \right\rvert\, 6 a-2 b+3 c-d=0\right\} \subseteq M_{22}
$$

Solution: According to Definition TSVS we need to establish the set equality $\langle D\rangle=X$ (Definition SE). Check that each of three elements of D is an element of X (each passes the membership criteria), so by Definition SS, we have the first set inclusion, $\langle D\rangle \subseteq X$.
To establish the second set inclusion, $X \subseteq\langle D\rangle$, we grab a generic element of X and ask if it can be written as a linear combination of the three elements of D ? With the assumption that $6 a-2 b+3 c-d=0$ are there scalars $\alpha_{1}, \alpha_{2}, \alpha_{3}$ such that

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\alpha_{1}\left[\begin{array}{ll}
1 & 0 \\
0 & 6
\end{array}\right]+\alpha_{2}\left[\begin{array}{cc}
0 & 1 \\
0 & -2
\end{array}\right]+\alpha_{3}\left[\begin{array}{ll}
0 & 0 \\
1 & 3
\end{array}\right]
$$

We massage the right-hand side,

$$
=\left[\begin{array}{cc}
\alpha_{1} & \alpha_{2} \\
\alpha_{3} & 6 \alpha_{1}-2 \alpha_{2}+3 \alpha_{3}
\end{array}\right]
$$

If we apply the definition of matrix equality (Definition ME) we get a system of four equations in the three variables $\alpha_{1}, \alpha_{2}, \alpha_{3}$ which is represented by the augmented matrix,

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & a \\
0 & 1 & 0 & b \\
0 & 0 & 1 & c \\
6 & -2 & 3 & d
\end{array}\right]
$$

This matrix is very nearly in reduced row-echelon form, we just need to perform (by hand) the operations $-6 R_{1}+R_{4}, 2 R_{2}+R_{4},-3 R_{3}+R_{4}$ and apply the knowledge that $6 a-2 b+3 c-d=0$,

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & a \\
0 & 1 & 0 & b \\
0 & 0 & 1 & c \\
6 & -2 & 3 & d
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cccc}
1 & 0 & 0 & a \\
0 & \boxed{1} & 0 & b \\
0 & 0 & \boxed{1} & c \\
0 & 0 & 0 & -6 a+2 b-3 c+d
\end{array}\right]=\left[\begin{array}{cccc}
{[1} & 0 & 0 & a \\
0 & \boxed{1} & 0 & b \\
0 & 0 & 1 & c \\
0 & 0 & 0 & 0
\end{array}\right]
$$

By Theorem RCLS we see that the system is consistent, so there are scalars $\alpha_{1}, \alpha_{2}, \alpha_{3}$, and so $X \subseteq\langle D\rangle$. By Definition SE, we have $X=\langle D\rangle$ and so D spans X.

Another approach to this problem is to begin with the set X and vary its description until a generic element is "obviously" written as a linear combination of the three elements in D. Note too that Theorem G does not apply since we have no advance knowledge of the dimension of X. (If we establish the linear independence of D then we could see that $\operatorname{dim}(X)=3$.)
3. The set $Y=\left\{a+b x+c x^{2}+d x^{3} \mid a+b+3 c-5 d=0,2 a-b+3 c+4 d=0\right\}$ is a subspace of P_{3}, the vector space of polynomials with degree at most 3 (you may assume this much). With complete justification, determine the dimension of Y. (20 points)

Solution: We have to construct a basis of Y before we can (easily) compute the dimension. By manipulating the description of Y we can construct a spanning set, and then check the set for linear independence. First, consider the homogeneous system whose coefficient matrix we now row-reduce,

$$
\left[\begin{array}{cccc}
1 & 1 & 3 & -5 \\
2 & -1 & 3 & -4
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cccc}
{[1} & 0 & 2 & -3 \\
0 & \boxed{1} & 1 & -2
\end{array}\right]
$$

We can begin modifying Y by replacing the membership criteria with an equivalent homogeneous system, based on these two row-equivalent coefficient matrices,

$$
\begin{aligned}
Y & =\left\{a+b x+c x^{2}+d x^{3} \mid a+b+3 c-5 d=0,2 a-b+3 c+4 d=0\right\} \\
& =\left\{a+b x+c x^{2}+d x^{3} \mid a+2 c-3 d=0, b+c-2 d=0\right\} \\
& =\left\{a+b x+c x^{2}+d x^{3} \mid a=-2 c+3 d, b=-c+2 d\right\} \\
& =\left\{(-2 c+3 d)+(-c+2 d) x+c x^{2}+d x^{3} \mid c, d \in \mathbb{C}\right\} \\
& =\left\{\left(-2 c-c x+c x^{2}\right)+\left(3 d+2 d x+d x^{3}\right) \mid c, d \in \mathbb{C}\right\} \\
& =\left\{c\left(-2-x+x^{2}\right)+d\left(3+2 x+x^{3}\right) \mid c, d \in \mathbb{C}\right\} \\
& =\left\langle\left\{-2-x+x^{2}, 3+2 x+x^{3}\right\}\right\rangle
\end{aligned}
$$

So $B=\left\{-2-x+x^{2}, 3+2 x+x^{3}\right\}$ is a spanning set for Y. Is B linearly independent? Let α_{1} and α_{2} be the unknown scalars in a relation of linear dependence,

$$
\begin{aligned}
\mathbf{0} & =0+0 x+0 x^{2}+0 x^{4} \\
& =\alpha_{1}\left(-2-x+x^{2}\right)+\alpha_{2}\left(3+2 x+x^{3}\right) \\
& =\left(-2 \alpha_{1}+3 \alpha_{2}\right)+\left(-\alpha_{1}+2 \alpha_{2}\right)+\alpha_{1} x^{2}+\alpha_{2} x^{3}
\end{aligned}
$$

The equality of the coefficients x^{2} and x^{3} implies that $\alpha_{1}=\alpha_{2}=0$. So by Definition LI, the set B is linearly independent. By Definition B, we know B is a basis of Y with size 2 , and so $\operatorname{dim}(Y)=2$.
4. Illustrate the use of the three tests of Theorem TSS to prove that W is a subspace of \mathbb{C}^{3}. (15 points)

$$
W=\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \right\rvert\, 2 x_{1}+5 x_{2}-7 x_{3}=0\right\}
$$

Solution: See your Section S class notes, Example SC3 and the solution to Exercise S.M20. In particular, the existence of the zero vector is not in question, but its membership in W could be checked as part of testing that W is non-empty. Also, be certain that your checks of the two types of closure are clearly written as establishing implications (clearly stated hypotheses, and their application in establishing the right conclusion).
5. Suppose that $B=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \ldots, \mathbf{x}_{n}\right\}$ is a basis for \mathbb{C}^{n}. Let A be a nonsingular matrix of size n and define $C=\left\{A \mathbf{x}_{1}, A \mathbf{x}_{2}, \ldots, A \mathbf{x}_{n}\right\}$.
Choose one of the following two statements (by circling it) and provide a proof. You must indicate which statement you have chosen to prove, or there will be no credit. (15 points)
(a) C is a linearly independent set.
(b) C is a spanning set of \mathbb{C}^{n}.

Solution: We provide proofs of both statements. As a practical matter, knowing that the dimension of \mathbb{C}^{n} is n (Theorem DCM), we can apply Theorem G to prove one statement after we first prove the other. However this requires that we are certain that the set C has n distinct elements, which requires a short proof that turns on A being nonsingular.
(a) C is linearly independent. Work on a relation of linear dependence on C,

$$
\begin{aligned}
\mathbf{0} & =a_{1} A \mathbf{x}_{1}+a_{2} A \mathbf{x}_{2}+a_{3} A \mathbf{x}_{3}+\cdots+a_{n} A \mathbf{x}_{n} & & \text { Definition RLD } \\
& =A a_{1} \mathbf{x}_{1}+A a_{2} \mathbf{x}_{2}+A a_{3} \mathbf{x}_{3}+\cdots+A a_{n} \mathbf{x}_{n} & & \text { Theorem MMSMM } \\
& =A\left(a_{1} \mathbf{x}_{1}+a_{2} \mathbf{x}_{2}+a_{3} \mathbf{x}_{3}+\cdots+a_{n} \mathbf{x}_{n}\right) & & \text { Theorem MMDAA }
\end{aligned}
$$

Since A is nonsingular, Definition NM and Theorem SLEMM allows us to conclude that

$$
a_{1} \mathbf{x}_{1}+a_{2} \mathbf{x}_{2}+\cdots+a_{n} \mathbf{x}_{n}=\mathbf{0}
$$

But this is a relation of linear dependence of the linearly independent set B, so the scalars are trivial, $a_{1}=a_{2}=a_{3}=\cdots=a_{n}=0$. By Definition LI, the set C is linearly independent.
(b) C spans \mathbb{C}^{n}. Given an arbitrary vector $\mathbf{y} \in \mathbb{C}^{n}$, can it be expressed as a linear combination of the vectors in C ? Since A is a nonsingular matrix we can define the vector \mathbf{w} to be the unique solution of the system $\mathcal{L S}(A, \mathbf{y})$ (Theorem NMUS). Since $\mathbf{w} \in \mathbb{C}^{n}$ we can write \mathbf{w} as a linear combination of the vectors in the basis B. So there are scalars, $b_{1}, b_{2}, b_{3}, \ldots, b_{n}$ such that

$$
\mathbf{w}=b_{1} \mathbf{x}_{1}+b_{2} \mathbf{x}_{2}+b_{3} \mathbf{x}_{3}+\cdots+b_{n} \mathbf{x}_{n}
$$

Then,

$$
\begin{aligned}
\mathbf{y} & =A \mathbf{w} \\
& =A\left(b_{1} \mathbf{x}_{1}+b_{2} \mathbf{x}_{2}+b_{3} \mathbf{x}_{3}+\cdots+b_{n} \mathbf{x}_{n}\right) \\
& =A b_{1} \mathbf{x}_{1}+A b_{2} \mathbf{x}_{2}+A b_{3} \mathbf{x}_{3}+\cdots+A b_{n} \mathbf{x}_{n} \\
& =b_{1} A \mathbf{x}_{1}+b_{2} A \mathbf{x}_{2}+b_{3} A \mathbf{x}_{3}+\cdots+b_{n} A \mathbf{x}_{n}
\end{aligned}
$$

Theorem SLEMM

Definition TSVS
Theorem MMDAA
Theorem MMSMM
So we can write an arbitrary vector of \mathbb{C}^{n} as a linear combination of the elements of C. In other words, C spans \mathbb{C}^{n} (Definition TSVS).

