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One of the most important things you can know about a matrix is its eigenvalue (or

characteristic value). By pure inspection it is nearly impossible to see the eigenvalues.

One way for estimating eigenvalues is to find the trace of the matrix. The trace merely

tells us what all the eigenvalues add up to. It doesn’t give us any range for the eigenval-

ues. Even if we have a very small trace we can still theoretically have two eigenvalues

whose absolute values are very large but have an opposite sign. In order to figure out

what range the eigenvalues of a certain matrix would be in we can use Gershgorin’s

Theorem.

1 Strictly Diagonally Dominant Matrices

Before we get to Gershgorin’s Theorem it is convenient to introduce a condition for

matrices known as Strictly Diagonally Dominant. While Gershgorin’s Theorem can be

proven by other means, it is simplest to solve it using knowledge of Strictly Diagonally

Dominant matrices.

A Strictly Diagonally Dominant, here on referred to as SDD, matrix is defined as

follows:

Definition 1 (Strictly Diagonally Dominant Matrices)

Matrix Ann is Strictly Diagonally Dominant if: |Aii| >
∑
j 6=i

|Aij| for i = 1,2,...,n

Example 1

A=


6 −1 2 2

−1 5 −1 2

1 1 −8 5

−1 0 0 3



It is fairly easy to see that each row satisfies the inequality |Aii| >
∑
j 6=i

|Aij|

row 1 |6| > | − 1| + |2| + |2|
row 2 |5| > | − 1| + | − 1| + |2|
row 3 | − 8| > |1| + |1| + |5|
row 4 |3| > | − 1| + |0| + |0
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Theorem 1.1 (Nonsingularity of SDD Matrices)

Strictly diagonally dominant matrices are always nonsingular.

Proof

�

Suppose that matrix Ann is SDD and singular, then there exists a u ∈ un such that

Au = b where b is the 0 vector while u 6= 0 (Definition NM[67]).

A =


A11 A12 ... A1n

A21 A22 ... A2n

... ...

An1 An2 ... Ann

 u =


u1

u2

...

un

 b = ~0

In the vector u there is a ”dominant element” in position ui where its absolute value

is either equal to or larger than the absolute value any other element in u. Lets call

this maximum value α.

Every element in u cannot be α. If this were the case then row i multiplied by u

would not result in a 0 element for b which is needed in order for b to be the 0 vector.

(1) |u1| = |u2| = ... = |un| = α (premise)

(2) Ai1u1 + Ai2u2 + ... + Ainun = 0 (row, column multiplication)

(3) ±Ai1α ± Ai2α ± ... ± Ainα = 0 (substitution)

(4) (±Ai1 ± Ai2 ± ... ± Ain) = 0 (distributivity)

(5) ±Ai1 ± Ai2 ± ... ± Ain = 0 (multiplicative inverse)

(6) |Ai1| = |Ai2| + ... + |Ain| (check for SDD)

(6) contradicts the premise that Ann is SDD thus every entry of un cannot be α.

In order for b1 to equal 0 then
n∑

i=1

A1iui = 0. Because |A11| >
∑
j 6=i

|Aij|, then position

u1 cannot be α. If u1 cannot be α then what about position u2? For the same reason

u1 cannot be α due to the the magnitude of Aii in row 1 of A, u2 cannot be α due to

the magnitude of Aii in row 2 of A. This logic then continues from u2 until un. As a

result no element in u can be the maximum element and all elements in u cannot be

the maximum element. Therefore there is no vector u that we can create such that

Au = 0.

If there is no u other than the 0 vector that can be created such that Au = 0, then

A is nonsingular (Definition NM[67]), a contradiction to our premise.
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�

In knowing that matrix A is nonsingular provided that A is SDD we can now move

on to Gershgorin’s Theorem.

2 Gershgorin’s Theorem

Theorem 2.1 (Gershgorin’s Theorem Round 1)

Every eigenvalue of matrix Ann satisfies:

|λ− Aii| ≤
∑
j 6=i

|Aij| i ∈ {1, 2, ..., n}

Proof

�

Suppose that λ is an eigenvalue of the matrix A. The matrix λI−A is SDD if |λ−Aii| >∑
j 6=i

|Aij| for every i. If Theorem 2.1 is not satisfied then λI − A is SDD. If λI − A is

SDD then it is nonsingular by Theorem 1.1 and as a result λ is not an eigenvalue. If λ

is to be an eigenvalue then Theorem 2.1 must hold.

�

In analyzing this theorem we see that every eigenvalue of the matrix A must be

within a distance d of Aii for some i. Since in general eigenvalues are elements of C, we

can visualize an eigenvalue as a point in the complex plane, where that point has to be

within distance d of Aii for some i. This brings us to Definition 2.

Definition 2.1 (Gershgorin’s disc)

Let di =
∑
j 6=i

|Aij|. Then the set Di = {z ∈ C : |z − Aii ≤ di} is called the ith

Gershgorin disc of the matrix A. This disc is the interior plus the boundary of a circle.

The circle has a radius di and is centered at (the real part of Aii, the imaginary part

of Aii)
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Example 2.1

A =

[
1 2

1 −1

]

As a result of matrix A we have eigenvalues
√

3, −
√

3 .

From the rows of matrix A we get a disc with radius 2 centered at (1,0) and a disc of

radius 1 centered at (-1,0). Plotting both the discs and the eigenvalues complex plane

we get:

Figure 2.1

From Definition 2.1 we see that for the matrix Ann there are n discs in the complex

plane, each centered on one of the diagonal entries of the matrix Ann. From Theorem

2.1 we know that every eigenvalue must lie within one of these discs. However it does

not say that each disc has an eigenvalue.

Example 2.2

A =

[
1 −1

2 −1

]
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As a result of matrix A we have eigenvalues i, −i .

From the rows of matrix A we get a disc with radius 1 centered at (1,0) and a disc of

radius 2 centered at (-1,0). Plotting both the discs and the eigenvalues in the complex

plane we get:

Figure 2.2

It is clearly visible that all of the eigenvalues fall within the disc defined by the 2nd

row and none fall within the disc defined by the 1st row.

Theorem 2.2 (Gershgorin in Respect to Columns)

Every eigenvalue of a matrix A must lie in a Gershgorin disc corresponding to the

columns of A.

7



Proof

�

Theorem 2.1 and the resulting definition 2 gives us Gershgorin discs that correspond

to the rows of A, where A is the matrix whose eigenvalues we are looking for. If we

transpose matrix A we then get the columns of matrix A as the rows of matrix At. As

we know from Theorem ETM[421] the eigenvalues of A are the same as the eigenvalues

of At additionally matrix At must also obey Theorem 2.1.

Putting this all together we have the set of eigenvalues that are in both A and

At. Because the rows of At correspond to the columns of A, the eigenvalues fall inside

Gershgorin discs corresponding to the the columns of A due to At obeying Theorem

2.1.

�

Now we come to one of the most interesting properties of Gershgorin discs.

Theorem 2.3 (Gershgorin’s Theorem Round 2)

A Subset G of the Gershgorin discs is called a disjoint group of discs if no disc in the

group G intersects a disc which is not in G. If a disjoint group G contains r

nonconcentric discs, then there are r eigenvalues.

Proof

�

Suppose A ∈ Ann. Define A’(p) as the matrix A with the off diagonal elements multi-

plied by the variable p, where p is defined from 0 to 1.

At A’(0) we have Gershgorin discs with a radius of 0 centered at the location of the

diagonal elements and eigenvalues equal to the diagonal elements. As p increases the

Gershgorin discs of A’(p) will increase in radius based on p. Additionally the eigenvalues

will also move. These movements can be tracked using the roots of the characateristic

polynomial belonging to A’(p).

With the variable p found in the off diagonal elements of A’(p), the characteristic

polynomial of A’(p) is a function based on two variables p and x. With the variable

p defined from 0 to 1, the characteristic polynomial will be continuous from 0 to 1.

If the characteristic polynomial is continous then the roots are continuous. Since the

eigenvalues are found within the roots, the change that the eigenvalues experience as p
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→ 1 is continuous. As such the eigenvalues will trace a continuous path from one point

to another based on the variable p.

Theorem 2.1 tells us that an eigenvalue always has to be within a disc, and due to

the continuity of the eigenvalue’s path there is no way that an eigenvalue can move from

one isolated group to another isolated group without being found in a region outside

of any disc. Being outside of a disc violates Theorem 2.1 and therefore every disjoing

group G that has n discs in it must have n eigenvalues in it.

�

Example 2.3

A =


5 0 0 −1

1 0 −1 1

−1.5 1 −2 1

−1 1 3 −3


As a result of matrix A we have eigenvalues ≈ 5.17,≈ −4.15,≈ −1.38,≈ 0.35.

From A we get a disc with radius 1 centered at (5,0), a disc of radius 3 centered at

(0,0), a disc with radius 3.5 centered at (-2,0) and a disc with radius 5 centered at

(-3,0). Plotting all four of these discs and the eigenvalues in the (Real, Imaginary)

plane we get:

Figure 2.3
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As you can see there is a Group G1 made up of 1 disc centered at (5,0) inside this

group there is 1 eigenvalue. In the larger group, G2 there are 4 discs and inside the

group there are 4 eigenvalues.

Theorem 2.4 (Real disjoint Gershgorin Disc)

If matrix Ann has a disjoint Gershgorin Disc, P , created from a row with a real

diagonal element then the eigenvalue within disc P is real.

Proof

�

Suppose A ∈ Ann λ is an eigenvalue of Ann and lies within disc q created from a row

which has a real diagonal element. Let q be disjoint from all other Gershgorin Discs.

If λ = x+iy, where x and y are both nonzero real numbers, then another eigenvalue of

Ann is x-iy. Since x-iy is equally distant from the center of the disc as x+iy, it follows

that x-iy is in the disc q. However this means that there are two eigenvalues inside the

isolated Gershgorin Disc q given that the center of q is on the real axis. This contradicts

Theorem 2.3 and therefore Theorem 2.4 must hold.

�

A good example of this theorem is example 2.3

As a result of Theorems 2.1 - 2.4 ranges for eigenvalues can be found. This is espe-

cially helpful for large matrices where calculating the eigenvalues can be impractical.

Additionally, Theorem 2.4 has applications to stability of dynamic systems.
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