Show *all* of your work and *explain* your answers fully. There is a total of 100 possible points. If you use a calculator or Mathematica on a problem be sure to write down both the input and output.

1. For the matrix A below, determine the dimensions of the null space, column space, row space and left null space. (15 points)

	[1	-1	5	2	9]
Δ	-2	2	-10	1	-8
$A \equiv$	1	1	1	1	9
	3	-1	$5 \\ -10 \\ 1 \\ 11$	0	17

Solution: Row-reduce A to reduced row-echelon form,

$\lceil 1 \rceil$	0	3	0	6]
0	1	-2	0	1
0	0	0	1	2
0	0	0	0	0

to discover three nonzero rows. So r = 3 along with m = 4 rows and n = 5 columns. Then by Theorem DFS, dim $(\mathcal{N}(A)) = n - r = 2$, dim $(\mathcal{C}(A)) = r = 3$, dim $(\mathcal{R}(A)) = r = 3$, dim (A) = m - r = 1.

2. In the vector space M_{22} , determine if the set T is linearly independent. (15 points)

T -	$\int \left[-2\right]$	1]	[2	2	$\left[-1\right]$	4	4	-2]	
I =	$\left\lfloor -1 \right\rfloor$	1,	$\lfloor 2$	1,	3	4,	0	$\begin{bmatrix} -2\\ 2 \end{bmatrix} \Big\}$	

Solution: We begin with a relation of linear dependence on the set, employing the 2×2 zero matrix as the zero vector of M_{22} ,

$$a_1 \begin{bmatrix} -2 & 1 \\ -1 & 1 \end{bmatrix} + a_2 \begin{bmatrix} 2 & 2 \\ 2 & 1 \end{bmatrix} + a_3 \begin{bmatrix} -1 & 4 \\ 3 & 4 \end{bmatrix} + a_4 \begin{bmatrix} 4 & -2 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Using the definitions of scalar multiplication, vector addition and matrix equality from M_{22} (Example VSM), we arrive at a homogeneous system of four equations in the four variables a_1 , a_2 , a_3 , a_4 with coefficient matrix,

$\left[-2\right]$	2	-1	4]
1	2	4	-2
-1	2	3	0
[1	1	4	2

This coefficient matrix row-reduces to the identity matrix, so by Theorem NRRI the matrix is nonsingular, and the only solution for the four scalars is the trivial solution $a_1 = a_2 = a_3 = a_4 = 0$. By Definition LI, the set T is linearly independent.

3. The set W below is a subspace of P_3 (the vector space of polynomials of degree three or less) and dim (W) = 3. You may assume these two facts throughout this problem. (40 points)

$$W = \{ p(x) \in P_3 \mid p(1) = 0 \}$$

(a) Prove that the set $B = \{2x - 2, x^2 - 1, x^3 - x^2 + x - 1\} \subset W$ is a basis for W.

Solution: Since dim (W) = 3, Theorem G tells us that we need only determine if B is linearly independent, or B spans W, and then we get the "other" property for free. We'll check linear independence by starting with a relation of linear dependence.

$$b_1(2x-2) + b_2(x^2-1) + b_3(x^3-x^2+x-1) = 0 + 0x + 0x^2 + 0x^3$$

Using vector addition, scalar multiplication and equality from Example VSP we arrive at a homogeneous system of four equations in the three variables b_1 , b_2 , b_3 having coefficient matrix

$\left[-2\right]$	-1	-1]
2	0	1
0	1	-1
0	0	1

which row-reduces to

0 1 0	1	0	0]
	0	1	0
0 0 1	0	0	1
	0	0	0

So we recognize there is just one solution (Theorem FVCS) of the consistent system (Theorem HSC), namely the trivial solution $b_1 = b_2 = b_3 = 0$. So B is linearly independent by Definition LI and by Theorem G is a basis of W.

(b) Is the set $C = \{5x - 5, x^2 - 2x + 1, x^2 - x, x^3 - x\}$ linearly independent? Why or why not?

Solution: You must first check that C is a subset of W before applying Theorem G. Each vector in C is a polynomial with a root at 1, so yes, $C \subset W$. Now Goldilocks tells us the set must be linearly dependent.

(c) Does the set $D = \{x^2 + 6x - 7, 4x^3 + 2x - 6\}$ span W? Why or why not?

Solution: As in part (b), check that $D \subset W$. Then Theorem G says we do not have enough vectors to span W.

(d) Find a basis for P_3 that has the set B as a subset.

Solution: The set B is linearly independent, since it is a basis of W. Theorem ELIS says we can choose a vector not in $W = \langle B \rangle$ and extend the linearly independent set. The polynomial r(x) = 37 does not have 1 as a root, so $r(x) \notin W$. (There are many, many possible choices for r(x).)

The set $E = B \cup \{r(x)\}$ is then linearly independent in P_3 . By Theorem DP, dim $(P_3) = 3 + 1 = 4$. So we can apply Theorem G to conclude that B spans W. Finally, by Definition B, we see that E is a basis of P_3 , and obviously has B as a subset.

4. Theorem TSS tells us that we can check three conditions to determine if a subset of a vector space is also a subspace. Illustrate the application of this theorem by showing that $W = \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} \middle| 3a - 2b + 6c = 0 \right\}$ is a subspace of \mathbb{C}^3 (15 points)

subspace of \mathbb{C}^3 . (15 points)

Solution: This is entirely similar in style to Example SC3 and Exercise S.M20.

5. Suppose that $\alpha \in \mathbb{C}$ is any scalar. Using only the ten defining properties of a vector space, show that $\alpha \mathbf{0} = \mathbf{0}$. (15 points)

Solution: This is Theorem ZVSM. See the proof given there.