Show all of your work and explain your answers fully. There is a total of 90 possible points. If you use a calculator or Mathematica on a problem be sure to write down both the input and output.

1. Find all solutions to the system of equations below, and express your answer as a solution set. (15 points)

 Augmented matrix:

 \[
 \begin{bmatrix}
 2 & 1 & 3 & 5 & -4 \\
 1 & 1 & 4 & 1 \\
 3 & 2 & 4 & 9 & -1
 \end{bmatrix}
 \]

 Row reduces to

 \[
 \begin{bmatrix}
 1 & 0 & 2 & 1 & 0 \\
 0 & 1 & -1 & 3 & 0 \\
 0 & 0 & 0 & 0 & 1
 \end{bmatrix}
 \]

 With a leading 1 in the final column we know that system is \(\text{inconsistent} \) (Thm RCLS)

 Solution set: \(\emptyset \)

2. Find all solutions to the system of equations below, and express your answer as a solution set. (15 points)

 Augmented matrix

 \[
 \begin{bmatrix}
 1 & -2 & 2 & -4 & 8 \\
 -1 & 2 & 1 & -5 & -5 \\
 1 & -2 & 0 & 2 & 6
 \end{bmatrix}
 \]

 Row reduce to

 \[
 \begin{bmatrix}
 1 & -2 & 0 & 2 & 6 \\
 0 & 0 & 1 & -3 & 1 \\
 0 & 0 & 0 & 0 & 0
 \end{bmatrix}
 \]

 \(D = 7134 \) \(\text{consistent} \)

 Solution set:

 \((2, 4, 5) \) \(x_2, x_4 \) free

 \(\{ (6 + 2x_2 - 2x_4, x_2, 1 + 3x_4, x_4) | x_2, x_4 \in \mathbb{C} \} \)
3. Determine if the matrix below is singular or nonsingular. (15 points)

\[
A = \begin{bmatrix}
1 & -1 & 3 & 2 \\
1 & 3 & 2 & 0 \\
1 & 3 & 3 & -1 \\
2 & -2 & 7 & 3
\end{bmatrix}
\]

Row reduce the matrix and apply the NSRRT.

\[
\begin{bmatrix}
\text{ref} & 1 & 0 & 0 & 4.25 \\
0 & 1 & 0 & -0.75 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

This is not the 4x4 identity matrix, \(I_4 \)
(Definition IM)
so \(A \) is not nonsingular.

4. Convert the matrix below to reduced row-echelon form, doing all the computations by hand. In each step, indicate clearly which row operations you are performing. (15 points)

\[
\begin{bmatrix}
1 & 2 & -4 & -4 \\
1 & 1 & -3 & -3 \\
-2 & -1 & 6 & 8
\end{bmatrix}
\]

\(- R_1 + R_2 \rightarrow \begin{bmatrix}
1 & 2 & -4 & -4 \\
0 & 1 & -1 & -1 \\
-2 & -1 & 6 & 8
\end{bmatrix}
\]

\(2R_1 + R_3 \rightarrow \begin{bmatrix}
1 & 2 & -4 & -4 \\
0 & 1 & -1 & -1 \\
0 & 3 & -2 & 0
\end{bmatrix}
\]

\((3) R_2 \rightarrow \begin{bmatrix}
1 & 2 & -4 & -4 \\
0 & 1 & -1 & -1 \\
0 & 3 & -2 & 0
\end{bmatrix}
\]

\(-2R_2 + R_1 \rightarrow \begin{bmatrix}
1 & 0 & -2 & -2 \\
0 & 1 & -1 & -1 \\
0 & 3 & -2 & 0
\end{bmatrix}
\]

\(-3R_2 + R_3 \rightarrow \begin{bmatrix}
1 & 0 & -2 & -2 \\
0 & 1 & -1 & -1 \\
0 & 0 & 1 & 3
\end{bmatrix}
\]

\(R_3 + R_2 \rightarrow \begin{bmatrix}
1 & 0 & 0 & 4 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 3
\end{bmatrix}
\]
5. A three-digit number has two properties. The tens-digit and the ones-digit add up to 5. If the number is written with the digits in the reverse order, and then subtracted from the original number, the result is 792. Use a system of equations to find all of the three-digit numbers with these properties. (15 points)

Solution: Let a be the hundreds digit, b the tens digit, and c the ones digit. Then the first condition says that $b + c = 5$. The original number is $100a + 10b + c$, while the reversed number is $100c + 10b + a$. So the second condition is

$$792 = (100a + 10b + c) - (100c + 10b + a) = 99a - 99c$$

So we arrive at the system of equations

$$b + c = 5$$
$$99a - 99c = 792$$

Using row operations, or an augmented matrix, we arrive at the equivalent system

$$a - c = 8$$
$$b + c = 5$$

We can vary c and obtain infinitely many solutions. However, c must be a digit, restricting us to ten values (0 – 9). Furthermore, if $c > 2$, then the first equation causes $a > 9$, an impossibility. Setting $c = 0$, yields 850 as a solution, and setting $c = 1$ yields 941 as another solution.

6. Suppose that A is a singular matrix, and B is a matrix in reduced row-echelon form that is row-equivalent to A. Prove that the last row of B is a zero row. (15 points)

Solution: Let n denote the size of the square matrix A. By Theorem NSRRI the hypothesis that A is singular implies that B is not the identity matrix I_n. If B has n pivot columns, then it would have to be I_n, so B must have fewer than n pivot columns. But the number of nonzero rows in B (r) is equal to the number of pivot columns as well. So the n rows of B have fewer than n nonzero rows, and b must contain at least one zero row. By Definition RREF, this row must be at the bottom of B.